
Find the sum of \[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
Answer
567.3k+ views
Hint: We will be using the concepts of the binomial theorem to solve the given question. We will be using some concepts of permutation and combination to further simplify the problem.
Complete step-by-step solution:
We have to find the sum of \[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
Now to solve the question we will first find the value of
\[{{S}_{1}}=\sum\limits_{i=0}^{n}{\sum\limits_{j=0}^{n}{j{}^{n}{{C}_{i}}}}\]
Now, we know that \[\sum\limits_{j=0}^{n}{j}=\dfrac{n\left( n+1 \right)}{2}\] and \[\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}={{2}^{n}}}\]
Therefore
\[{{S}_{1}}=\sum\limits_{i=0}^{n}{\sum\limits_{i=0}^{n}{j{}^{n}{{C}_{i}}}}=\dfrac{n\left( n+1 \right)}{2}{{2}^{n}}\] …………………………………………..(1)
Now, we know that sum \[{{S}_{1}}\] if express algebraically will be
\[{}^{n}{{C}_{0}}1+{}^{n}{{C}_{0}}2+........{}^{n}{{C}_{0}}n+\]
\[{}^{n}{{C}_{1}}1+{}^{n}{{C}_{1}}2+........{}^{n}{{C}_{1}}n+\]
. .
. .
. .
. .
\[{}^{n}{{C}_{n}}1+{}^{n}{{C}_{n}}2+........{}^{n}{{C}_{n}}n\]
Now we have to find
\[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
So we have to take all values of \[{{S}_{1}}\] in which \[i\le j\]. Also for this we have to note that the
\[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{1}}}}=\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{1}}}}\] because in the terms of \[{{S}_{1}}\] we have \[{}^{n}{{C}_{0}}1\] where \[i< j\] and \[{}^{n}{{C}_{n}}1\] where $i > j$ now
\[{}^{n}{{C}_{0}}1\], \[i< j\]
\[{}^{n}{{C}_{n}}1\], \[i> j\]
Also we know that \[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
Therefore, \[{}^{n}{{C}_{n}}i={}^{n}{{C}_{0}}i\]
So \[\sum\limits_{0\le i\le j \le n}{\sum{j{}^{n}{{C}_{1}}}}=\sum\limits_{n\ge i\ge j\ge 0}{\sum{j{}^{n}{{C}_{1}}}}\]
Let
\[{{S}_{2}}=\sum\limits_{0\le i\le j \le n}{\sum{j{}^{n}{{C}_{1}}}}\]
\[{{S}_{3}}=\sum\limits_{0\le j< i\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
Now, we see easily that
\[{{S}_{1}}={{S}_{2}}+{{S}_{3}}+\left( {}^{n}{{C}_{1}}1+{}^{n}{{C}_{2}}2+.....{}^{n}{{C}_{n}}n \right)\] ………………………………….(2)
So, we have to find value of
\[{}^{n}{{C}_{1}}1+{}^{n}{{C}_{2}}2+.....+{}^{n}{{C}_{n}}n\]
For this take binomial expansion of \[{{\left( 1+x \right)}^{n}}\]
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{n}}{{x}^{n}}\]
Now we differentiate both sides w.r.t x
\[n{{\left( 1+x \right)}^{n-1}}={}^{n}{{C}_{1}}+2{}^{n}{{C}_{2}}x+.....n{}^{n}{{C}_{n}}{{x}^{n-1}}\]
Now we substitute \[x=1\] above
\[n{{2}^{n-1}}={}^{n}{{C}_{1}}+2{}^{n}{{C}_{2}}+.....n{}^{n}{{C}_{n}}\]
Now we substitute this in (2) we have
\[{{S}_{1}}={{S}_{2}}+{{S}_{3}}+n{{2}^{n-1}}\]
Also we know that \[{{S}_{2}}={{S}_{3}}\] and \[{{S}_{1}}\] value from (1) therefore
\[\dfrac{n\left( n+1 \right){{2}^{n}}}{2}=2{{S}_{2}}+n{{2}^{n-1}}\]
\[\Rightarrow n\left( n+1 \right){{2}^{n-1}}-n{{2}^{n-1}}=2{{S}_{2}}\]
\[\Rightarrow {{2}^{n-1}}\left( {{n}^{2}}+n-n \right)=2{{S}_{2}}\]
\[\Rightarrow {{2}^{n-1}}\left( {{n}^{2}} \right)=2{{S}_{2}}\]
\[\Rightarrow {{n}^{2}}{{2}^{n-1}}=2{{S}_{2}}\] ……………………………………………..(3)
Now, we know that \[{{S}_{2}}=\sum\limits_{0\le i< j\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
So, we have to add \[{}^{n}{{C}_{1}}1+.....+{}^{n}{{C}_{n}}n\] in \[{{S}_{2}}\] to get \[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{1}}}}\]
Therefore
\[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}={{S}_{2}}+\left( {}^{n}{{C}_{1}}1+{}^{n}{{C}_{2}}1+.....{}^{n}{{C}_{n}}n \right)\]
\[={{n}^{2}}{{2}^{n-2}}+n{{2}^{n-1}}\]
\[={{n}^{2}}{{2}^{n-2}}+n{{2}^{n-1}}\]
Hence \[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}={{n}^{2}}{{2}^{n-2}}+n{{2}^{n-1}}\]
Note: To solve this type of question one must have a basic understanding of the binomial theorem. Also one must remember the binomial expansion of ${{\left( 1+x \right)}^{n}}$.
${{\left( 1+x\right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{n}}{{x}^{n}}$
Complete step-by-step solution:
We have to find the sum of \[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
Now to solve the question we will first find the value of
\[{{S}_{1}}=\sum\limits_{i=0}^{n}{\sum\limits_{j=0}^{n}{j{}^{n}{{C}_{i}}}}\]
Now, we know that \[\sum\limits_{j=0}^{n}{j}=\dfrac{n\left( n+1 \right)}{2}\] and \[\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}={{2}^{n}}}\]
Therefore
\[{{S}_{1}}=\sum\limits_{i=0}^{n}{\sum\limits_{i=0}^{n}{j{}^{n}{{C}_{i}}}}=\dfrac{n\left( n+1 \right)}{2}{{2}^{n}}\] …………………………………………..(1)
Now, we know that sum \[{{S}_{1}}\] if express algebraically will be
\[{}^{n}{{C}_{0}}1+{}^{n}{{C}_{0}}2+........{}^{n}{{C}_{0}}n+\]
\[{}^{n}{{C}_{1}}1+{}^{n}{{C}_{1}}2+........{}^{n}{{C}_{1}}n+\]
. .
. .
. .
. .
\[{}^{n}{{C}_{n}}1+{}^{n}{{C}_{n}}2+........{}^{n}{{C}_{n}}n\]
Now we have to find
\[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
So we have to take all values of \[{{S}_{1}}\] in which \[i\le j\]. Also for this we have to note that the
\[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{1}}}}=\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{1}}}}\] because in the terms of \[{{S}_{1}}\] we have \[{}^{n}{{C}_{0}}1\] where \[i< j\] and \[{}^{n}{{C}_{n}}1\] where $i > j$ now
\[{}^{n}{{C}_{0}}1\], \[i< j\]
\[{}^{n}{{C}_{n}}1\], \[i> j\]
Also we know that \[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
Therefore, \[{}^{n}{{C}_{n}}i={}^{n}{{C}_{0}}i\]
So \[\sum\limits_{0\le i\le j \le n}{\sum{j{}^{n}{{C}_{1}}}}=\sum\limits_{n\ge i\ge j\ge 0}{\sum{j{}^{n}{{C}_{1}}}}\]
Let
\[{{S}_{2}}=\sum\limits_{0\le i\le j \le n}{\sum{j{}^{n}{{C}_{1}}}}\]
\[{{S}_{3}}=\sum\limits_{0\le j< i\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
Now, we see easily that
\[{{S}_{1}}={{S}_{2}}+{{S}_{3}}+\left( {}^{n}{{C}_{1}}1+{}^{n}{{C}_{2}}2+.....{}^{n}{{C}_{n}}n \right)\] ………………………………….(2)
So, we have to find value of
\[{}^{n}{{C}_{1}}1+{}^{n}{{C}_{2}}2+.....+{}^{n}{{C}_{n}}n\]
For this take binomial expansion of \[{{\left( 1+x \right)}^{n}}\]
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{n}}{{x}^{n}}\]
Now we differentiate both sides w.r.t x
\[n{{\left( 1+x \right)}^{n-1}}={}^{n}{{C}_{1}}+2{}^{n}{{C}_{2}}x+.....n{}^{n}{{C}_{n}}{{x}^{n-1}}\]
Now we substitute \[x=1\] above
\[n{{2}^{n-1}}={}^{n}{{C}_{1}}+2{}^{n}{{C}_{2}}+.....n{}^{n}{{C}_{n}}\]
Now we substitute this in (2) we have
\[{{S}_{1}}={{S}_{2}}+{{S}_{3}}+n{{2}^{n-1}}\]
Also we know that \[{{S}_{2}}={{S}_{3}}\] and \[{{S}_{1}}\] value from (1) therefore
\[\dfrac{n\left( n+1 \right){{2}^{n}}}{2}=2{{S}_{2}}+n{{2}^{n-1}}\]
\[\Rightarrow n\left( n+1 \right){{2}^{n-1}}-n{{2}^{n-1}}=2{{S}_{2}}\]
\[\Rightarrow {{2}^{n-1}}\left( {{n}^{2}}+n-n \right)=2{{S}_{2}}\]
\[\Rightarrow {{2}^{n-1}}\left( {{n}^{2}} \right)=2{{S}_{2}}\]
\[\Rightarrow {{n}^{2}}{{2}^{n-1}}=2{{S}_{2}}\] ……………………………………………..(3)
Now, we know that \[{{S}_{2}}=\sum\limits_{0\le i< j\le n}{\sum{j{}^{n}{{C}_{i}}}}\]
So, we have to add \[{}^{n}{{C}_{1}}1+.....+{}^{n}{{C}_{n}}n\] in \[{{S}_{2}}\] to get \[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{1}}}}\]
Therefore
\[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}={{S}_{2}}+\left( {}^{n}{{C}_{1}}1+{}^{n}{{C}_{2}}1+.....{}^{n}{{C}_{n}}n \right)\]
\[={{n}^{2}}{{2}^{n-2}}+n{{2}^{n-1}}\]
\[={{n}^{2}}{{2}^{n-2}}+n{{2}^{n-1}}\]
Hence \[\sum\limits_{0\le i\le j\le n}{\sum{j{}^{n}{{C}_{i}}}}={{n}^{2}}{{2}^{n-2}}+n{{2}^{n-1}}\]
Note: To solve this type of question one must have a basic understanding of the binomial theorem. Also one must remember the binomial expansion of ${{\left( 1+x \right)}^{n}}$.
${{\left( 1+x\right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{n}}{{x}^{n}}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

