
Find the sum of series 1, 3, 5, 7, 9,…… up to n terms?
Answer
508.5k+ views
Hint: We can see that the given series in the problem follows an Arithmetic Progression (AP). We find the ${{n}^{th}}$ term of the series by using the first term and common difference of the given series. Once, we find the ${{n}^{th}}$ terms, we use the sum of n terms of Arithmetic Progression (AP) to get the desired result.
Complete step-by-step solution:
According to the problem, we have a series given as 1, 3, 5, 7, 9,……. We need to find the sum of the elements in this series up to n terms.
We know that an Arithmetic Progression (AP) is of form a, a+d, a+2d,…….., where ‘a’ is known as the first term and ‘d’ is known as common difference.
We can see that the difference between any two consecutive numbers is 2. We can see that the given series are in AP (Arithmetic Progression) with the first term ‘1’ and common difference ‘2’.
Let us find the ${{n}^{th}}$ term for the given series. We know that ${{n}^{th}}$ term of an Arithmetic Progression (AP) is defined as ${{T}_{n}}=a+\left( n-1 \right)d$.
So, we have ${{n}^{th}}$ term for the given series as ${{T}_{n}}=1+\left( n-1 \right)2$.
${{T}_{n}}=1+2n-2$.
${{T}_{n}}=2n-1$ ---(1).
Now let us find the sum of n terms of the given series. We know that sum of n terms of an Arithmetic Progression (AP) is defined as ${{S}_{n}}=\dfrac{n}{2}\times \left( a+{{T}_{n}} \right)$.
So, we have sum of n terms of the given series as ${{S}_{n}}=\dfrac{n}{2}\times \left( 1+2n-1 \right)$.
${{S}_{n}}=\dfrac{n}{2}\times \left( 2n \right)$.
${{S}_{n}}=n\times n$.
${{S}_{n}}={{n}^{2}}$.
We have found the sum of n terms of the series 1, 3, 5, 7, …… is ${{n}^{2}}$.
$\therefore$ The sum of series 1, 3, 5, 7, 9,…… up to n terms is ${{n}^{2}}$.
Note: We can also use the sum of ‘n’ natural numbers to find the sum of the given series after calculating the ${{n}^{th}}$ term. Whenever we see a problem following Arithmetic Progression (AP), we make use of ${{n}^{th}}$ term. Similarly, we can expect problems to find the sum of even numbers up to n-terms.
Complete step-by-step solution:
According to the problem, we have a series given as 1, 3, 5, 7, 9,……. We need to find the sum of the elements in this series up to n terms.
We know that an Arithmetic Progression (AP) is of form a, a+d, a+2d,…….., where ‘a’ is known as the first term and ‘d’ is known as common difference.
We can see that the difference between any two consecutive numbers is 2. We can see that the given series are in AP (Arithmetic Progression) with the first term ‘1’ and common difference ‘2’.
Let us find the ${{n}^{th}}$ term for the given series. We know that ${{n}^{th}}$ term of an Arithmetic Progression (AP) is defined as ${{T}_{n}}=a+\left( n-1 \right)d$.
So, we have ${{n}^{th}}$ term for the given series as ${{T}_{n}}=1+\left( n-1 \right)2$.
${{T}_{n}}=1+2n-2$.
${{T}_{n}}=2n-1$ ---(1).
Now let us find the sum of n terms of the given series. We know that sum of n terms of an Arithmetic Progression (AP) is defined as ${{S}_{n}}=\dfrac{n}{2}\times \left( a+{{T}_{n}} \right)$.
So, we have sum of n terms of the given series as ${{S}_{n}}=\dfrac{n}{2}\times \left( 1+2n-1 \right)$.
${{S}_{n}}=\dfrac{n}{2}\times \left( 2n \right)$.
${{S}_{n}}=n\times n$.
${{S}_{n}}={{n}^{2}}$.
We have found the sum of n terms of the series 1, 3, 5, 7, …… is ${{n}^{2}}$.
$\therefore$ The sum of series 1, 3, 5, 7, 9,…… up to n terms is ${{n}^{2}}$.
Note: We can also use the sum of ‘n’ natural numbers to find the sum of the given series after calculating the ${{n}^{th}}$ term. Whenever we see a problem following Arithmetic Progression (AP), we make use of ${{n}^{th}}$ term. Similarly, we can expect problems to find the sum of even numbers up to n-terms.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

