
Find the sum of n terms of the series
$ \dfrac{2}{{1.2}} + \dfrac{5}{{2.3}}.2 + \dfrac{{10}}{{3.4}}{2^2} + \dfrac{{17}}{{4.5}}{.2^3} + ...... $
Answer
581.7k+ views
Hint: In this particular type of question use the concept that first find out the $ {n^{th}} $ term of the given series by observing the trend it follows then separate its $ {n^{th}} $ terms in the terms of denominator and then write its, $ {T_1},{T_2},{T_3}..............{T_{n - 1}},{T_n} $ terms and add them so that it cancel out most of the terms so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given series is
$ \dfrac{2}{{1.2}} + \dfrac{5}{{2.3}}.2 + \dfrac{{10}}{{3.4}}{2^2} + \dfrac{{17}}{{4.5}}{.2^3} + ...... $
In the above series first find out the $ {n^{th}} $ term of the above series.
So the numerator of the above series is
2, 5, 10, 17,......
So as we see carefully, it will follow the trend of $ \left( {{n^2} + 1} \right) $ , where n = 1, 2, 3, ...
Now the numerator is multiplied by $ 1,2,{2^2},{2^3},..... $
So this will follow the G.P with common ratio 2.
So the $ {n^{th}} $ term of this series is $ {r^{n - 1}} $
So the $ {n^{th}} $ term of $ 1,2,{2^2},{2^3},..... $ is $ {2^{n - 1}} $ , where n = 1, 2, 3, ...
So over all numerator of the given series follow the trend of $ \left( {{n^2} + 1} \right){2^{n - 1}} $
Now the denominator of the given series is (1.2, 2.3, 3.4, 4.5........)
So as we carefully, it will follow the trend of $ n\left( {n + 1} \right) $ , where n = 1, 2, 3, ...
So the $ {n^{th}} $ term of the given series is
$ \Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}} $
Now add and subtract by 1 in numerator of $ \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} $ term we have,
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {{n^2} - 1 + 1 + 1} \right)}}{{n\left( {n + 1} \right)}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {{n^2} - 1} \right)}}{{n\left( {n + 1} \right)}} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{n\left( {n + 1} \right)}} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {n - 1} \right)}}{n} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{1}{n} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} $ , $ \left[ {\because \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} = \dfrac{2}{n} - \dfrac{2}{{n + 1}}} \right] $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{1}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{2}{{n + 1}} + \dfrac{1}{n} $
So this is also written as,
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \left( {2 - \dfrac{2}{{n + 1}}} \right) - \left( {1 - \dfrac{1}{n}} \right) $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \left( {\dfrac{{2n}}{{n + 1}}} \right) - \left( {\dfrac{{n - 1}}{n}} \right) $
So $ {T_n} $ become
$ \Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}} = \left[ {\left( {\dfrac{{2n}}{{n + 1}}} \right) - \left( {\dfrac{{n - 1}}{n}} \right)} \right]{2^{n - 1}} $
$ \Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}} = \left( {\dfrac{{{2^n}.n}}{{n + 1}}} \right) - \left( {\dfrac{{{2^{n - 1}}\left( {n - 1} \right)}}{n}} \right) $
Now write $ {T_1},{T_2},{T_3}..............{T_{n - 1}},{T_n} $ we have,
$ {T_1} = \dfrac{{2.1}}{2} - 0 $
$ {T_2} = \left( {\dfrac{{{2^2}.2}}{3}} \right) - \left( {\dfrac{{2.1}}{2}} \right) $
$ {T_3} = \left( {\dfrac{{{2^3}.3}}{4}} \right) - \left( {\dfrac{{{2^2}.2}}{3}} \right) $
$ {T_3} = \left( {\dfrac{{{2^4}.4}}{5}} \right) - \left( {\dfrac{{{2^3}.3}}{4}} \right) $
.
.
.
.
$ {T_{n - 1}} = \left( {\dfrac{{{2^{n - 1}}.\left( {n - 1} \right)}}{n}} \right) - \left( {\dfrac{{{2^{n - 2}}\left( {n - 2} \right)}}{{n - 1}}} \right) $
$ {T_n} = \left( {\dfrac{{{2^n}.n}}{{n + 1}}} \right) - \left( {\dfrac{{{2^{n - 1}}\left( {n - 1} \right)}}{n}} \right) $
Now add these all terms we have,
$ \Rightarrow {T_1} + {T_2} + {T_3} + ... + {T_{n - 1}} + {T_n} = {S_n} = \dfrac{{{2^n}.n}}{{n + 1}} - 0 $
Remaining all the terms are cancel out so we have,
$ \Rightarrow {S_n} = \dfrac{{{2^n}.n}}{{n + 1}} $
So this is the required sum.
Note: Whenever we face such types of questions the key concept we have to remember is that first convert the given series into simplified form by converting its $ {n^{th}} $ term into the difference of two term such that when we add all the terms by substituting n =1 ,2, 3, 4....... (n – 1), the most of the terms are canceled out and the remaining terms are the sum of the required series.
Complete step-by-step answer:
Given series is
$ \dfrac{2}{{1.2}} + \dfrac{5}{{2.3}}.2 + \dfrac{{10}}{{3.4}}{2^2} + \dfrac{{17}}{{4.5}}{.2^3} + ...... $
In the above series first find out the $ {n^{th}} $ term of the above series.
So the numerator of the above series is
2, 5, 10, 17,......
So as we see carefully, it will follow the trend of $ \left( {{n^2} + 1} \right) $ , where n = 1, 2, 3, ...
Now the numerator is multiplied by $ 1,2,{2^2},{2^3},..... $
So this will follow the G.P with common ratio 2.
So the $ {n^{th}} $ term of this series is $ {r^{n - 1}} $
So the $ {n^{th}} $ term of $ 1,2,{2^2},{2^3},..... $ is $ {2^{n - 1}} $ , where n = 1, 2, 3, ...
So over all numerator of the given series follow the trend of $ \left( {{n^2} + 1} \right){2^{n - 1}} $
Now the denominator of the given series is (1.2, 2.3, 3.4, 4.5........)
So as we carefully, it will follow the trend of $ n\left( {n + 1} \right) $ , where n = 1, 2, 3, ...
So the $ {n^{th}} $ term of the given series is
$ \Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}} $
Now add and subtract by 1 in numerator of $ \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} $ term we have,
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {{n^2} - 1 + 1 + 1} \right)}}{{n\left( {n + 1} \right)}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {{n^2} - 1} \right)}}{{n\left( {n + 1} \right)}} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{n\left( {n + 1} \right)}} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {n - 1} \right)}}{n} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{1}{n} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} $ , $ \left[ {\because \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} = \dfrac{2}{n} - \dfrac{2}{{n + 1}}} \right] $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{1}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}} $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{2}{{n + 1}} + \dfrac{1}{n} $
So this is also written as,
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \left( {2 - \dfrac{2}{{n + 1}}} \right) - \left( {1 - \dfrac{1}{n}} \right) $
$ \Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \left( {\dfrac{{2n}}{{n + 1}}} \right) - \left( {\dfrac{{n - 1}}{n}} \right) $
So $ {T_n} $ become
$ \Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}} = \left[ {\left( {\dfrac{{2n}}{{n + 1}}} \right) - \left( {\dfrac{{n - 1}}{n}} \right)} \right]{2^{n - 1}} $
$ \Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}} = \left( {\dfrac{{{2^n}.n}}{{n + 1}}} \right) - \left( {\dfrac{{{2^{n - 1}}\left( {n - 1} \right)}}{n}} \right) $
Now write $ {T_1},{T_2},{T_3}..............{T_{n - 1}},{T_n} $ we have,
$ {T_1} = \dfrac{{2.1}}{2} - 0 $
$ {T_2} = \left( {\dfrac{{{2^2}.2}}{3}} \right) - \left( {\dfrac{{2.1}}{2}} \right) $
$ {T_3} = \left( {\dfrac{{{2^3}.3}}{4}} \right) - \left( {\dfrac{{{2^2}.2}}{3}} \right) $
$ {T_3} = \left( {\dfrac{{{2^4}.4}}{5}} \right) - \left( {\dfrac{{{2^3}.3}}{4}} \right) $
.
.
.
.
$ {T_{n - 1}} = \left( {\dfrac{{{2^{n - 1}}.\left( {n - 1} \right)}}{n}} \right) - \left( {\dfrac{{{2^{n - 2}}\left( {n - 2} \right)}}{{n - 1}}} \right) $
$ {T_n} = \left( {\dfrac{{{2^n}.n}}{{n + 1}}} \right) - \left( {\dfrac{{{2^{n - 1}}\left( {n - 1} \right)}}{n}} \right) $
Now add these all terms we have,
$ \Rightarrow {T_1} + {T_2} + {T_3} + ... + {T_{n - 1}} + {T_n} = {S_n} = \dfrac{{{2^n}.n}}{{n + 1}} - 0 $
Remaining all the terms are cancel out so we have,
$ \Rightarrow {S_n} = \dfrac{{{2^n}.n}}{{n + 1}} $
So this is the required sum.
Note: Whenever we face such types of questions the key concept we have to remember is that first convert the given series into simplified form by converting its $ {n^{th}} $ term into the difference of two term such that when we add all the terms by substituting n =1 ,2, 3, 4....... (n – 1), the most of the terms are canceled out and the remaining terms are the sum of the required series.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

