
Find the sum of n terms of the sequence
\[(x + y),({x^2} + xy + {y^2}),({x^3} + {x^2}y + x{y^2} + {y^3}),....\] to n terms.
Answer
561.9k+ views
Hint: Here we will multiply and divide each of the terms by \[\left( {x - y} \right)\] and then use the formula for sum of terms in GP to get the desired answer.
The sum of n terms of a GP is given by:-
\[S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] where a is the first term and r is the common ratio.
Complete step-by-step answer:
The given terms are:-
\[(x + y),({x^2} + xy + {y^2}),({x^3} + {x^2}y + x{y^2} + {y^3}),....\]
Now adding these terms we get:-
$\Rightarrow$\[(x + y) + ({x^2} + xy + {y^2}) + ({x^3} + {x^2}y + x{y^2} + {y^3}) + ....\]
Now multiplying and dividing each term by \[\left( {x - y} \right)\] we get:-
$\Rightarrow$\[\dfrac{1}{{x - y}}\left[ {(x + y)\left( {x - y} \right) + \left( {x - y} \right)({x^2} + xy + {y^2}) + \left( {x - y}\right)({x^3} + {x^2}y + x{y^2} + {y^3}) + ....} \right]\]
Now we know that,
$\Rightarrow$\[{x^2} - {y^2} = (x + y)\left( {x - y} \right)\]
Also,
$\Rightarrow$\[{x^3} - {y^3} = \left( {x - y} \right)({x^2} + xy + {y^2})\]
Hence, substituting the values we get:-
$\Rightarrow$\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {{x^2} - {y^2} + {x^3} - {y^3} + {x^4} - {y^4} + ....} \right]\]
Splitting the terms we get:-
$\Rightarrow$\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {{x^2} + {x^3} + {x^4} + ....{\text{n terms}}} \right] -
\dfrac{1}{{\left( {x - y} \right)}}\left[ {{y^2} + {y^3} + {y^4} + ....{\text{n terms}}} \right]\]
Now we can see that both x and y are forming a GP
Hence we will apply the formula of n terms of a GP which is given by:-
\[S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] where a is the first term and r is the common ratio.
Hence, applying the formula we get:-
$\Rightarrow$\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}}} \right] -\dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right]\]
Simplifying it we get:-
$\Rightarrow$\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}} -\dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right]\]
Hence the sum of the given sequence is:-
\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}} -
\dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right]\]
Note: Students should note that in geometric progression two consecutive have the same common ratio as that other two consecutive terms of a series.
Also, students should note that the sum of n terms of a series in GP is given by:-
\[S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] when \[r > 1\]
Where a is the first term and r is the common ratio.
And,
\[S = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\] when \[r < 1\]
Where a is the first term and r is the common ratio.
The sum of n terms of a GP is given by:-
\[S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] where a is the first term and r is the common ratio.
Complete step-by-step answer:
The given terms are:-
\[(x + y),({x^2} + xy + {y^2}),({x^3} + {x^2}y + x{y^2} + {y^3}),....\]
Now adding these terms we get:-
$\Rightarrow$\[(x + y) + ({x^2} + xy + {y^2}) + ({x^3} + {x^2}y + x{y^2} + {y^3}) + ....\]
Now multiplying and dividing each term by \[\left( {x - y} \right)\] we get:-
$\Rightarrow$\[\dfrac{1}{{x - y}}\left[ {(x + y)\left( {x - y} \right) + \left( {x - y} \right)({x^2} + xy + {y^2}) + \left( {x - y}\right)({x^3} + {x^2}y + x{y^2} + {y^3}) + ....} \right]\]
Now we know that,
$\Rightarrow$\[{x^2} - {y^2} = (x + y)\left( {x - y} \right)\]
Also,
$\Rightarrow$\[{x^3} - {y^3} = \left( {x - y} \right)({x^2} + xy + {y^2})\]
Hence, substituting the values we get:-
$\Rightarrow$\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {{x^2} - {y^2} + {x^3} - {y^3} + {x^4} - {y^4} + ....} \right]\]
Splitting the terms we get:-
$\Rightarrow$\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {{x^2} + {x^3} + {x^4} + ....{\text{n terms}}} \right] -
\dfrac{1}{{\left( {x - y} \right)}}\left[ {{y^2} + {y^3} + {y^4} + ....{\text{n terms}}} \right]\]
Now we can see that both x and y are forming a GP
Hence we will apply the formula of n terms of a GP which is given by:-
\[S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] where a is the first term and r is the common ratio.
Hence, applying the formula we get:-
$\Rightarrow$\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}}} \right] -\dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right]\]
Simplifying it we get:-
$\Rightarrow$\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}} -\dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right]\]
Hence the sum of the given sequence is:-
\[S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}} -
\dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right]\]
Note: Students should note that in geometric progression two consecutive have the same common ratio as that other two consecutive terms of a series.
Also, students should note that the sum of n terms of a series in GP is given by:-
\[S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] when \[r > 1\]
Where a is the first term and r is the common ratio.
And,
\[S = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\] when \[r < 1\]
Where a is the first term and r is the common ratio.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

