
How do you find the sum of counting numbers from 1 to 25 inclusive?
Answer
445.5k+ views
Hint: In this problem, we have to find the sum of counting numbers from 1 to 25 inclusive. We can first write the series from 1 to 25 in ascending and descending order. We can then pair the term in ascending and descending order and obtain their sum. We can multiply the number of pairs and the sum of the pairs and we can divide it by 2 as we have doubled the sum required to get the answer.
Complete step by step answer:
We know that we have to find the sum of counting numbers from 1 to 25 inclusive.
We can write the series from 1 to 25 in ascending and descending order.
Ascending order \[\Rightarrow 1+2+3+4+5+........+21+22+23+24+25\]
Descending order\[\Rightarrow 25+24+23+22+21+........+5+4+3+2+1\]
We can see that, if we pair it off and add, we get the same sum, i.e. 26.
We can also see that there are 25 pairs, but we have doubled the sum required, so we can add the number of pairs and sum of the pairs and divide it by 2, we get
\[\Rightarrow Sum=\dfrac{25\times 26}{2}=325\]
Therefore, the sum of counting numbers from 1 to 25 inclusive is 325.
Note: We can also find the sum from the arithmetic progression.
We know that the sum of series formula is,
\[S=\dfrac{n}{2}\left( a+{{T}_{n}} \right)\] …… (1)
We know that the given series is,
\[\Rightarrow 1+2+3+4+5+........+21+22+23+24+25\]
Here, first term, a = 1, common difference, d = 1 and number of terms, n = 25.
We can substitute the above values in (1), we get
\[\begin{align}
& \Rightarrow S=\dfrac{25}{2}\left( 25+1 \right)=\dfrac{650}{2} \\
& \Rightarrow S=325 \\
\end{align}\]
Complete step by step answer:
We know that we have to find the sum of counting numbers from 1 to 25 inclusive.
We can write the series from 1 to 25 in ascending and descending order.
Ascending order \[\Rightarrow 1+2+3+4+5+........+21+22+23+24+25\]
Descending order\[\Rightarrow 25+24+23+22+21+........+5+4+3+2+1\]
We can see that, if we pair it off and add, we get the same sum, i.e. 26.
We can also see that there are 25 pairs, but we have doubled the sum required, so we can add the number of pairs and sum of the pairs and divide it by 2, we get
\[\Rightarrow Sum=\dfrac{25\times 26}{2}=325\]
Therefore, the sum of counting numbers from 1 to 25 inclusive is 325.
Note: We can also find the sum from the arithmetic progression.
We know that the sum of series formula is,
\[S=\dfrac{n}{2}\left( a+{{T}_{n}} \right)\] …… (1)
We know that the given series is,
\[\Rightarrow 1+2+3+4+5+........+21+22+23+24+25\]
Here, first term, a = 1, common difference, d = 1 and number of terms, n = 25.
We can substitute the above values in (1), we get
\[\begin{align}
& \Rightarrow S=\dfrac{25}{2}\left( 25+1 \right)=\dfrac{650}{2} \\
& \Rightarrow S=325 \\
\end{align}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE
