
Find the sum of all the 11 terms of an A.P. whose middle terms is 30.
Answer
577.2k+ views
Hint: For solving this question, we will use the concept of ${{\text{n}}^{\text{th}}}$ term of an A . P whose first term is a and difference is d and the sum of n terms of an A..P. We will first evaluate the which is the place of term 30 in an A.P. And, then we will substitute the values of a and d term in a formula of sum of an A.P.
Complete step-by-step answer:
In question it is provided that the total number of terms in an A.P is equals to 11 and the value of the middle most term in an A.P is equals to 30.
So, firstly we need to calculate at which term 30 occurs.
Now, here n = 11 which is odd. So, middle term of series when n is odd $={{\dfrac{(n+1)}{2}}^{th}}term$
So, middle term for A.P of 11 term $={{\dfrac{(11+1)}{2}}^{th}}term$
On solving we get,
${{6}^{th}}term=30$
Now, for any term at n place in A.P van be evaluated by formula ${{a}_{n}}=a+(n-1)\cdot d$ , where a = first term , n = place of term , d = common difference and ${{a}_{n}}=$ term at ${{n}^{th}}$ place.
So, ${{a}_{6}}=a+(6-1)\cdot d$
Or $30-5d=a$
Now, summation of n terms of an A.P is equals to ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$
Substituting values of a , and n in ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ , we get
${{S}_{11}}=\dfrac{11}{2}\left[ 2a+\left( 11-1 \right)d \right]$…….( i )
Substituting $30-5d=a$ in equation ( i ), we get
${{S}_{11}}=\dfrac{11}{2}\left[ 60-10d+10d \right]$
On simplifying, we get
${{S}_{11}}=\dfrac{11}{2}\left( 60 \right)$
On solving we get
${{S}_{11}}=330$
Hence, the sum of all 11 terms of an A.P is equals to 330.
Note: As we see on substituting the values of a, b and c, we get a very complex equation so try to avoid calculation error as it may affect the answer and change the value. Re – arranging of the terms should be done in such a way that calculation becomes a bit easy and terms get cancelled out. Also , sometimes it's not necessary to solve the linear equation, we can substitute the linear equation in another complex equation to make it into simpler form and evaluate the answer.
Complete step-by-step answer:
In question it is provided that the total number of terms in an A.P is equals to 11 and the value of the middle most term in an A.P is equals to 30.
So, firstly we need to calculate at which term 30 occurs.
Now, here n = 11 which is odd. So, middle term of series when n is odd $={{\dfrac{(n+1)}{2}}^{th}}term$
So, middle term for A.P of 11 term $={{\dfrac{(11+1)}{2}}^{th}}term$
On solving we get,
${{6}^{th}}term=30$
Now, for any term at n place in A.P van be evaluated by formula ${{a}_{n}}=a+(n-1)\cdot d$ , where a = first term , n = place of term , d = common difference and ${{a}_{n}}=$ term at ${{n}^{th}}$ place.
So, ${{a}_{6}}=a+(6-1)\cdot d$
Or $30-5d=a$
Now, summation of n terms of an A.P is equals to ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$
Substituting values of a , and n in ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ , we get
${{S}_{11}}=\dfrac{11}{2}\left[ 2a+\left( 11-1 \right)d \right]$…….( i )
Substituting $30-5d=a$ in equation ( i ), we get
${{S}_{11}}=\dfrac{11}{2}\left[ 60-10d+10d \right]$
On simplifying, we get
${{S}_{11}}=\dfrac{11}{2}\left( 60 \right)$
On solving we get
${{S}_{11}}=330$
Hence, the sum of all 11 terms of an A.P is equals to 330.
Note: As we see on substituting the values of a, b and c, we get a very complex equation so try to avoid calculation error as it may affect the answer and change the value. Re – arranging of the terms should be done in such a way that calculation becomes a bit easy and terms get cancelled out. Also , sometimes it's not necessary to solve the linear equation, we can substitute the linear equation in another complex equation to make it into simpler form and evaluate the answer.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

