
Find the sum and product of the roots of the equation \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\].
Answer
585.3k+ views
Hint: We know that the sum of roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to \[\dfrac{-b}{a}\]. The product of roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to \[\dfrac{c}{a}\]. We will compare \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] with \[a{{x}^{2}}+bx+c=0\]. From this we will find the values of a, b and c. With the values of a, b and c we will find the sum of roots and product of roots from the above formulae.
Complete step-by-step solution -
Before solving the question,
We should know that if \[\alpha \] and \[\beta \] are roots of the equation \[a{{x}^{2}}+bx+c=0\].
The sum of roots of \[a{{x}^{2}}+bx+c\] is \[\alpha +\beta =\dfrac{-b}{a}......(1)\]
The product of roots of \[a{{x}^{2}}+bx+c\] is \[\alpha \beta =\dfrac{c}{a}......(2)\]
From the question, we are given an equation \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\]
By comparing the equation \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] with \[a{{x}^{2}}+bx+c=0\], we get
\[\begin{align}
& a=\sqrt{3}.....(3) \\
& b=27.......(4) \\
& c=5\sqrt{3}.....(5) \\
\end{align}\]
Let the roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] are \[\alpha \] and \[\beta \].
We know that \[\alpha +\beta =\dfrac{-b}{a}\].
In the same way, the sum of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[\alpha +\beta \].
From equation (3) and equation (4),
\[\alpha +\beta =\dfrac{-b}{a}=\dfrac{-27}{\sqrt{3}}=-9\sqrt{3}\].
Therefore, the sum of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[-9\sqrt{3}\].
We know that \[\alpha \beta =\dfrac{c}{a}\].
In the same way, the product of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[\alpha \beta \].
From equation (3) and equation (5),
\[\alpha \beta =\dfrac{c}{a}=\dfrac{5\sqrt{3}}{\sqrt{3}}=5\]
Therefore, the product of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to 5.
Hence, the sum of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[-9\sqrt{3}\] and the product of roots is equal to 5.
Note: We know that if the roots of \[a{{x}^{2}}+bx+c=0\] are \[\alpha \] and \[\beta \] . Then \[\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}\]
and \[\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\].
Let the roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] are \[\alpha \] and \[\beta \].
Let us compare \[a{{x}^{2}}+bx+c=0\] with \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\].
\[\begin{align}
& a=\sqrt{3}.......(1) \\
& b=27.......(2) \\
& c=5\sqrt{3}.....(3) \\
\end{align}\]
From equation (1), (2) and (3),
\[\alpha =\dfrac{-27+\sqrt{{{(27)}^{2}}-4(\sqrt{3})(5\sqrt{3})}}{2\sqrt{3}}=\dfrac{-27+\sqrt{669}}{2\sqrt{3}}\].
\[\beta =\dfrac{-27-\sqrt{{{(27)}^{2}}-4(\sqrt{3})(5\sqrt{3})}}{2\sqrt{3}}=\dfrac{-27-\sqrt{669}}{2\sqrt{3}}\].
\[\begin{align}
& \alpha +\beta =\dfrac{-27+\sqrt{669}}{2\sqrt{3}}+\dfrac{-27-\sqrt{669}}{2\sqrt{3}}=\dfrac{-54}{2\sqrt{3}}=-9\sqrt{3} \\
& \alpha \beta =\left( \dfrac{-27+\sqrt{669}}{2\sqrt{3}} \right)\left( \dfrac{-27-\sqrt{669}}{2\sqrt{3}} \right)=\dfrac{{{(-27)}^{2}}-669}{{{(2\sqrt{3})}^{2}}}=\dfrac{60}{12}=5 \\
\end{align}\]
Hence, the sum of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[-9\sqrt{3}\].
The product of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to 5
Complete step-by-step solution -
Before solving the question,
We should know that if \[\alpha \] and \[\beta \] are roots of the equation \[a{{x}^{2}}+bx+c=0\].
The sum of roots of \[a{{x}^{2}}+bx+c\] is \[\alpha +\beta =\dfrac{-b}{a}......(1)\]
The product of roots of \[a{{x}^{2}}+bx+c\] is \[\alpha \beta =\dfrac{c}{a}......(2)\]
From the question, we are given an equation \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\]
By comparing the equation \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] with \[a{{x}^{2}}+bx+c=0\], we get
\[\begin{align}
& a=\sqrt{3}.....(3) \\
& b=27.......(4) \\
& c=5\sqrt{3}.....(5) \\
\end{align}\]
Let the roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] are \[\alpha \] and \[\beta \].
We know that \[\alpha +\beta =\dfrac{-b}{a}\].
In the same way, the sum of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[\alpha +\beta \].
From equation (3) and equation (4),
\[\alpha +\beta =\dfrac{-b}{a}=\dfrac{-27}{\sqrt{3}}=-9\sqrt{3}\].
Therefore, the sum of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[-9\sqrt{3}\].
We know that \[\alpha \beta =\dfrac{c}{a}\].
In the same way, the product of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[\alpha \beta \].
From equation (3) and equation (5),
\[\alpha \beta =\dfrac{c}{a}=\dfrac{5\sqrt{3}}{\sqrt{3}}=5\]
Therefore, the product of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to 5.
Hence, the sum of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[-9\sqrt{3}\] and the product of roots is equal to 5.
Note: We know that if the roots of \[a{{x}^{2}}+bx+c=0\] are \[\alpha \] and \[\beta \] . Then \[\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}\]
and \[\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\].
Let the roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] are \[\alpha \] and \[\beta \].
Let us compare \[a{{x}^{2}}+bx+c=0\] with \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\].
\[\begin{align}
& a=\sqrt{3}.......(1) \\
& b=27.......(2) \\
& c=5\sqrt{3}.....(3) \\
\end{align}\]
From equation (1), (2) and (3),
\[\alpha =\dfrac{-27+\sqrt{{{(27)}^{2}}-4(\sqrt{3})(5\sqrt{3})}}{2\sqrt{3}}=\dfrac{-27+\sqrt{669}}{2\sqrt{3}}\].
\[\beta =\dfrac{-27-\sqrt{{{(27)}^{2}}-4(\sqrt{3})(5\sqrt{3})}}{2\sqrt{3}}=\dfrac{-27-\sqrt{669}}{2\sqrt{3}}\].
\[\begin{align}
& \alpha +\beta =\dfrac{-27+\sqrt{669}}{2\sqrt{3}}+\dfrac{-27-\sqrt{669}}{2\sqrt{3}}=\dfrac{-54}{2\sqrt{3}}=-9\sqrt{3} \\
& \alpha \beta =\left( \dfrac{-27+\sqrt{669}}{2\sqrt{3}} \right)\left( \dfrac{-27-\sqrt{669}}{2\sqrt{3}} \right)=\dfrac{{{(-27)}^{2}}-669}{{{(2\sqrt{3})}^{2}}}=\dfrac{60}{12}=5 \\
\end{align}\]
Hence, the sum of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to \[-9\sqrt{3}\].
The product of roots of \[\sqrt{3}{{x}^{2}}+27x+5\sqrt{3}=0\] is equal to 5
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

