
Find the standard deviation of 40,42, and 48. If each value is multiplied by 3, find the standard deviation of the new data.
Answer
563.1k+ views
Hint: First of all, calculate the mean of 40, 42, and 48 using the formula, \[Mean\left( \mu \right)=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{n}\] . Here, the value of n is 3. Now, calculate \[\sum{\left( x-\mu \right)}\] and \[{{\sum{\left( x-\mu \right)}}^{2}}\] . Use the formula, \[\sigma =\sqrt{\dfrac{\sum{{{\left( x-\mu \right)}^{2}}}}{n}-{{\left( \dfrac{\sum{\left( x-\mu \right)}}{n} \right)}^{2}}}\] and calculate the standard deviation. Now, multiply by 3 in 40, 42, and 48. Similarly, calculate the mean of 120, 126, and 144 using the formula, \[Mean\left( \mu \right)=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{n}\] . Here, the value of n is 3. Now, calculate \[\sum{\left( x-\mu \right)}\] and \[{{\sum{\left( x-\mu \right)}}^{2}}\] . Use the formula, \[\sigma =\sqrt{\dfrac{\sum{{{\left( x-\mu \right)}^{2}}}}{n}-{{\left( \dfrac{\sum{\left( x-\mu \right)}}{n} \right)}^{2}}}\] and calculate the standard deviation.
Complete step by step answer:
According to the question,
In the \[{{1}^{st}}\] case, we have,
The number of data, \[n\] = 3 ………………………………………..(1)
The first numeric data = 40 ………………………………………….(2)
The second numeric data = 42 ………………………………………….(3)
The third numeric data = 48 ………………………………………….(4)
First of all, let us calculate the mean of the above data.
We know the formula for the mean of \[{{x}_{1}},{{x}_{2}},\] and \[{{x}_{3}}\] , \[Mean\left( \mu \right)=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{n}\] ………………………………………(5)
Now, from equation (1), equation (2), equation (3), equation (4), and equation (5), we get
\[Mean\left( \mu \right)=\dfrac{40+42+48}{3}=\dfrac{130}{3}=43.34\] ……………………………………………..(6)
Here, on arranging the data in the table below, we get
\[\sum{\left( x-\mu \right)=\left( -3.34 \right)+\left( -1.34 \right)+4.66=}-0.02\] ………………………………………………(7)
\[\sum{{{\left( x-\mu \right)}^{2}}=11.1556+1.7956+21.7156=}34.6668\] ………………………………………………..(8)
We know the formula for the standard deviation, \[\sigma =\sqrt{\dfrac{\sum{{{\left( x-\mu \right)}^{2}}}}{n}-{{\left( \dfrac{\sum{\left( x-\mu \right)}}{n} \right)}^{2}}}\] ……………………………………….(9)
Now, from equation (7), equation (8), and equation (9), we get
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{\sum{{{\left( x-\mu \right)}^{2}}}}{n}-{{\left( \dfrac{\sum{\left( x-\mu \right)}}{n} \right)}^{2}}} \\
& \Rightarrow \sigma =\sqrt{\dfrac{34.668}{3}-{{\left( \dfrac{-0.02}{3} \right)}^{2}}} \\
& \Rightarrow \sigma =\sqrt{11.556-0.000045} \\
& \Rightarrow \sigma =11.555955 \\
\end{align}\]
\[\Rightarrow \sigma =3.399\] ………………………………………………(10)
In the \[{{2}^{nd}}\] case,
On multiplying by 3, we get
The number of data, \[n\] = 3 ………………………………………..(11)
The first numeric data = 120 ………………………………………….(12)
The second numeric data = 126 ………………………………………….(13)
The third numeric data = 144 ………………………………………….(14)
Now, from equation (5), equation (11), equation (12), equation (13), and equation (14), we get
\[Mean\left( \mu \right)=\dfrac{120+126+144}{3}=130\] …………………………………………..(15)
Here, on arranging the data in the table below, we get
\[\sum{\left( x-\mu \right)=-10+\left( -4 \right)+\left( 14 \right)=}0\] ………………………………………….(16)
\[\sum{{{\left( x-\mu \right)}^{2}}=100+16+196=312}\] ……………………………………………(17)
Now, from equation (9), equation (16), and equation (17), we get
\[\sigma =\sqrt{\dfrac{\sum{{{\left( x-\mu \right)}^{2}}}}{n}-{{\left( \dfrac{\sum{\left( x-\mu \right)}}{n} \right)}^{2}}}\]
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{312}{3}-{{\left( \dfrac{0}{3} \right)}^{2}}} \\
& \Rightarrow \sigma =\sqrt{104} \\
\end{align}\]
\[\Rightarrow \sigma =10.198\] ……………………………………(18)
From equation (10) and equation (18), we have the standard deviation for the first case and second case respectively.
Hence, the standard deviation of 40, 42, and 48 is 3.399, and after multiplying by 3 the standard deviation is 10.198.
Note: We can also solve this question by using a shortcut method. We know the property that if the standard deviation of the numbers \[a,b,\,\,\text{and}\,c\] is \[d\] . Then, on multiplying the numbers \[a,b,\,\,\text{and}\,c\] by \[p\], the standard deviation will be \[pd\] . The standard deviation of 40, 42, and 48 is 3.399. Since the numbers 120, 126, and 144 are three times 40, 42, and 48. Therefore, the standard deviation of 40,42, and 48 is \[3\times 3.399=10.198\left( approx \right)\] .
Complete step by step answer:
According to the question,
In the \[{{1}^{st}}\] case, we have,
The number of data, \[n\] = 3 ………………………………………..(1)
The first numeric data = 40 ………………………………………….(2)
The second numeric data = 42 ………………………………………….(3)
The third numeric data = 48 ………………………………………….(4)
First of all, let us calculate the mean of the above data.
We know the formula for the mean of \[{{x}_{1}},{{x}_{2}},\] and \[{{x}_{3}}\] , \[Mean\left( \mu \right)=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{n}\] ………………………………………(5)
Now, from equation (1), equation (2), equation (3), equation (4), and equation (5), we get
\[Mean\left( \mu \right)=\dfrac{40+42+48}{3}=\dfrac{130}{3}=43.34\] ……………………………………………..(6)
Here, on arranging the data in the table below, we get
| \[x\] | \[Mean\left( \mu \right)\] | \[\left( x-\mu \right)\] | \[{{\left( x-\mu \right)}^{2}}\] |
| 40 | 43.34 | -3.34 | 11.1556 |
| 42 | 43.34 | -1.34 | 1.7956 |
| 48 | 43.34 | 4.66 | 21.7156 |
\[\sum{\left( x-\mu \right)=\left( -3.34 \right)+\left( -1.34 \right)+4.66=}-0.02\] ………………………………………………(7)
\[\sum{{{\left( x-\mu \right)}^{2}}=11.1556+1.7956+21.7156=}34.6668\] ………………………………………………..(8)
We know the formula for the standard deviation, \[\sigma =\sqrt{\dfrac{\sum{{{\left( x-\mu \right)}^{2}}}}{n}-{{\left( \dfrac{\sum{\left( x-\mu \right)}}{n} \right)}^{2}}}\] ……………………………………….(9)
Now, from equation (7), equation (8), and equation (9), we get
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{\sum{{{\left( x-\mu \right)}^{2}}}}{n}-{{\left( \dfrac{\sum{\left( x-\mu \right)}}{n} \right)}^{2}}} \\
& \Rightarrow \sigma =\sqrt{\dfrac{34.668}{3}-{{\left( \dfrac{-0.02}{3} \right)}^{2}}} \\
& \Rightarrow \sigma =\sqrt{11.556-0.000045} \\
& \Rightarrow \sigma =11.555955 \\
\end{align}\]
\[\Rightarrow \sigma =3.399\] ………………………………………………(10)
In the \[{{2}^{nd}}\] case,
On multiplying by 3, we get
The number of data, \[n\] = 3 ………………………………………..(11)
The first numeric data = 120 ………………………………………….(12)
The second numeric data = 126 ………………………………………….(13)
The third numeric data = 144 ………………………………………….(14)
Now, from equation (5), equation (11), equation (12), equation (13), and equation (14), we get
\[Mean\left( \mu \right)=\dfrac{120+126+144}{3}=130\] …………………………………………..(15)
Here, on arranging the data in the table below, we get
| \[x\] | \[Mean\left( \mu \right)\] | \[\left( x-\mu \right)\] | \[{{\left( x-\mu \right)}^{2}}\] |
| 120 | 130 | -10 | 100 |
| 126 | 130 | -4 | 16 |
| 144 | 130 | 14 | 196 |
\[\sum{\left( x-\mu \right)=-10+\left( -4 \right)+\left( 14 \right)=}0\] ………………………………………….(16)
\[\sum{{{\left( x-\mu \right)}^{2}}=100+16+196=312}\] ……………………………………………(17)
Now, from equation (9), equation (16), and equation (17), we get
\[\sigma =\sqrt{\dfrac{\sum{{{\left( x-\mu \right)}^{2}}}}{n}-{{\left( \dfrac{\sum{\left( x-\mu \right)}}{n} \right)}^{2}}}\]
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{312}{3}-{{\left( \dfrac{0}{3} \right)}^{2}}} \\
& \Rightarrow \sigma =\sqrt{104} \\
\end{align}\]
\[\Rightarrow \sigma =10.198\] ……………………………………(18)
From equation (10) and equation (18), we have the standard deviation for the first case and second case respectively.
Hence, the standard deviation of 40, 42, and 48 is 3.399, and after multiplying by 3 the standard deviation is 10.198.
Note: We can also solve this question by using a shortcut method. We know the property that if the standard deviation of the numbers \[a,b,\,\,\text{and}\,c\] is \[d\] . Then, on multiplying the numbers \[a,b,\,\,\text{and}\,c\] by \[p\], the standard deviation will be \[pd\] . The standard deviation of 40, 42, and 48 is 3.399. Since the numbers 120, 126, and 144 are three times 40, 42, and 48. Therefore, the standard deviation of 40,42, and 48 is \[3\times 3.399=10.198\left( approx \right)\] .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

