
Find the square root of the given complex number $\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$
(a) $\pm \left\{ \dfrac{\left( a-b \right)+i\left( a+2b \right)}{2} \right\}$
(b) $\pm \left\{ \left( i+5b \right)+i\left( a-4b \right) \right\}$
(c) $-\sqrt{2}\left( a-b \right)$
(d) $\mp \left\{ \left( i+b \right)+i\left( a-b \right) \right\}$
(e) $\pm \left\{ \left( a+b \right)+i\left( a-b \right) \right\}$
Answer
578.7k+ views
- Hint:For solving this question, first we will derive the formula $4xy={{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}$ by using the basic formulas like ${{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy$ and ${{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy$ . After that, we will simplify the term $4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i$ and try to transform it into the whole square form. Then, we will apply the square root operator and select the correct option.
Complete step-by-step solution -
Given:
We have to solve the following term:
$\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy.............\left( 1 \right) \\
& {{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy.............\left( 2 \right) \\
& \left( {{x}^{2}}-{{y}^{2}} \right)=\left( x+y \right)\left( x-y \right).........\left( 3 \right) \\
& i=\sqrt{-1}......................................\left( 4 \right) \\
\end{align}$
Now, subtract equation (1) from equation (2). Then,
$\begin{align}
& {{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}=\left( {{x}^{2}}+{{y}^{2}}+2xy \right)-\left( {{x}^{2}}+{{y}^{2}}-2xy \right) \\
& \Rightarrow {{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}=2xy+2xy \\
& \Rightarrow {{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}=4xy \\
& \Rightarrow 4xy={{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}....................................\left( 5 \right) \\
\end{align}$
Now, let $4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i=N$ and we have to find the value of $\sqrt{N}$ .
Now, we will use the above four formulas to simplify the term $N=4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i$ . So, we will use the formula from the equation (3) to write ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ in the expression of $N$ . Then,
$\begin{align}
& N=4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i \\
& \Rightarrow N=4ab-2\left( a+b \right)\left( a-b \right)i \\
\end{align}$
Now, we will use the formula from the equation (5) to write $4ab={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}$ in the above equation. Then,
$\begin{align}
& N=4ab-2\left( a+b \right)\left( a-b \right)i \\
& \Rightarrow N={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}-2\left( a+b \right)\left( a-b \right)i \\
\end{align}$
Now, from the equation (4), we know that value of iota $i=\sqrt{-1}$ so, ${{i}^{2}}=-1$ and we can use this, to write $-{{\left( a-b \right)}^{2}}={{i}^{2}}{{\left( a-b \right)}^{2}}$ in the above equation $N={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}-2\left( a+b \right)\left( a-b \right)i$ . Then,
$\begin{align}
& N={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}-2\left( a+b \right)\left( a-b \right)i \\
& \Rightarrow N={{\left( a+b \right)}^{2}}+{{i}^{2}}{{\left( a-b \right)}^{2}}-2\left( a+b \right)\left( a-b \right)i \\
& \Rightarrow N={{\left( a+b \right)}^{2}}+{{\left( i\left( a-b \right) \right)}^{2}}-2\left( a+b \right)\left( i\left( a-b \right) \right) \\
\end{align}$
Now, we will use the formula from the equation (1) with $x=\left( a+b \right)$ and $y=i\left( a-b \right)$ to write $N={{\left[ \left( a+b \right)-i\left( a-b \right) \right]}^{2}}$ in the above equation. Then,
$\begin{align}
& N={{\left( a+b \right)}^{2}}+{{\left( i\left( a-b \right) \right)}^{2}}-2\left( a+b \right)\left( i\left( a-b \right) \right) \\
& \Rightarrow N={{\left[ \left( a+b \right)-i\left( a-b \right) \right]}^{2}} \\
\end{align}$
Now, we will apply the square root operator on both terms in the above equation. Then,
$\begin{align}
& N={{\left[ \left( a+b \right)-i\left( a-b \right) \right]}^{2}} \\
& \Rightarrow \sqrt{N}=\pm \left\{ \left( a+b \right)-i\left( a-b \right) \right\} \\
\end{align}$
Now, as per our assumption $N=4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i$ so, we can write $\sqrt{N}=\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$ in the above equation. Then,
$\begin{align}
& \sqrt{N}=\pm \left\{ \left( a+b \right)-i\left( a-b \right) \right\} \\
& \Rightarrow \sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}=\pm \left\{ \left( a+b \right)-i\left( a-b \right) \right\} \\
\end{align}$
Now, from the above result, we conclude that the value of $\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$ will be equal to the value of the term $\pm \left\{ \left( a+b \right)-i\left( a-b \right) \right\}$ .
Hence, the option (e) will be the correct option.
Note: Here, the student should first understand the given term $\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$ and then, solve accordingly so, that our result will be matched by one of the given options. Moreover, we should remember the formula $4ab={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}$ and apply it directly and in such questions, we should try to stick to basic concepts and formulas like ${{i}^{2}}=-1$ , ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ . Then, we should solve it without any calculation mistakes and select the correct option.
Complete step-by-step solution -
Given:
We have to solve the following term:
$\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy.............\left( 1 \right) \\
& {{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy.............\left( 2 \right) \\
& \left( {{x}^{2}}-{{y}^{2}} \right)=\left( x+y \right)\left( x-y \right).........\left( 3 \right) \\
& i=\sqrt{-1}......................................\left( 4 \right) \\
\end{align}$
Now, subtract equation (1) from equation (2). Then,
$\begin{align}
& {{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}=\left( {{x}^{2}}+{{y}^{2}}+2xy \right)-\left( {{x}^{2}}+{{y}^{2}}-2xy \right) \\
& \Rightarrow {{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}=2xy+2xy \\
& \Rightarrow {{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}=4xy \\
& \Rightarrow 4xy={{\left( x+y \right)}^{2}}-{{\left( x-y \right)}^{2}}....................................\left( 5 \right) \\
\end{align}$
Now, let $4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i=N$ and we have to find the value of $\sqrt{N}$ .
Now, we will use the above four formulas to simplify the term $N=4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i$ . So, we will use the formula from the equation (3) to write ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ in the expression of $N$ . Then,
$\begin{align}
& N=4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i \\
& \Rightarrow N=4ab-2\left( a+b \right)\left( a-b \right)i \\
\end{align}$
Now, we will use the formula from the equation (5) to write $4ab={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}$ in the above equation. Then,
$\begin{align}
& N=4ab-2\left( a+b \right)\left( a-b \right)i \\
& \Rightarrow N={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}-2\left( a+b \right)\left( a-b \right)i \\
\end{align}$
Now, from the equation (4), we know that value of iota $i=\sqrt{-1}$ so, ${{i}^{2}}=-1$ and we can use this, to write $-{{\left( a-b \right)}^{2}}={{i}^{2}}{{\left( a-b \right)}^{2}}$ in the above equation $N={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}-2\left( a+b \right)\left( a-b \right)i$ . Then,
$\begin{align}
& N={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}-2\left( a+b \right)\left( a-b \right)i \\
& \Rightarrow N={{\left( a+b \right)}^{2}}+{{i}^{2}}{{\left( a-b \right)}^{2}}-2\left( a+b \right)\left( a-b \right)i \\
& \Rightarrow N={{\left( a+b \right)}^{2}}+{{\left( i\left( a-b \right) \right)}^{2}}-2\left( a+b \right)\left( i\left( a-b \right) \right) \\
\end{align}$
Now, we will use the formula from the equation (1) with $x=\left( a+b \right)$ and $y=i\left( a-b \right)$ to write $N={{\left[ \left( a+b \right)-i\left( a-b \right) \right]}^{2}}$ in the above equation. Then,
$\begin{align}
& N={{\left( a+b \right)}^{2}}+{{\left( i\left( a-b \right) \right)}^{2}}-2\left( a+b \right)\left( i\left( a-b \right) \right) \\
& \Rightarrow N={{\left[ \left( a+b \right)-i\left( a-b \right) \right]}^{2}} \\
\end{align}$
Now, we will apply the square root operator on both terms in the above equation. Then,
$\begin{align}
& N={{\left[ \left( a+b \right)-i\left( a-b \right) \right]}^{2}} \\
& \Rightarrow \sqrt{N}=\pm \left\{ \left( a+b \right)-i\left( a-b \right) \right\} \\
\end{align}$
Now, as per our assumption $N=4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i$ so, we can write $\sqrt{N}=\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$ in the above equation. Then,
$\begin{align}
& \sqrt{N}=\pm \left\{ \left( a+b \right)-i\left( a-b \right) \right\} \\
& \Rightarrow \sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}=\pm \left\{ \left( a+b \right)-i\left( a-b \right) \right\} \\
\end{align}$
Now, from the above result, we conclude that the value of $\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$ will be equal to the value of the term $\pm \left\{ \left( a+b \right)-i\left( a-b \right) \right\}$ .
Hence, the option (e) will be the correct option.
Note: Here, the student should first understand the given term $\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}$ and then, solve accordingly so, that our result will be matched by one of the given options. Moreover, we should remember the formula $4ab={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}$ and apply it directly and in such questions, we should try to stick to basic concepts and formulas like ${{i}^{2}}=-1$ , ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ . Then, we should solve it without any calculation mistakes and select the correct option.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

