
Find the square root of the complex number \[-5+12i\]?
Answer
564.6k+ views
Hint: We start solving the problem by assuming the square root of the given complex number. We then square them on both sides and compare the real and imaginary parts on both sides. We then make the necessary substitutions and calculations related to the real and imaginary parts of the square root to get the required result.
Complete step-by-step solution:
According to the problem, we need to find the square root of the complex number \[-5+12i\].
Let us assume the square root of the given complex number \[-5+12i\] be \[a+bi\].
So, we get \[a+bi=\sqrt{-5+12i}\] ---(1).
Let us do square on both sides.
$\Rightarrow {{\left( a+bi \right)}^{2}}=-5+12i$.
$\Rightarrow {{a}^{2}}+{{\left( ib \right)}^{2}}+2\left( a \right)\left( ib \right)=-5+12i$.
$\Rightarrow {{a}^{2}}+{{i}^{2}}{{b}^{2}}+2iab=-5+12i$.
We know that ${{i}^{2}}=-1$.
$\Rightarrow {{a}^{2}}+\left( -1 \right){{b}^{2}}+2iab=-5+12i$.
$\Rightarrow {{a}^{2}}-{{b}^{2}}+2iab=-5+12i$.
$\Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)+\left( 2ab \right)i=-5+12i$.
Comparing real and imaginary parts on both sides, we get ${{a}^{2}}-{{b}^{2}}=-5$ and $2ab=12$.
Now, we have $2ab=12\Leftrightarrow b=\dfrac{6}{a}$ ---(2). Let us substitute this result in ${{a}^{2}}-{{b}^{2}}=-5$.
So, we get ${{a}^{2}}-{{\left( \dfrac{6}{a} \right)}^{2}}=-5$.
$\Rightarrow {{a}^{2}}-\dfrac{36}{{{a}^{2}}}=-5$.
$\Rightarrow \dfrac{{{a}^{4}}-36}{{{a}^{2}}}=-5$.
$\Rightarrow {{a}^{4}}-36=-5{{a}^{2}}$.
$\Rightarrow {{a}^{4}}+5{{a}^{2}}-36=0$.
\[\Rightarrow {{a}^{4}}+9{{a}^{2}}-4{{a}^{2}}-36=0\].
\[\Rightarrow {{a}^{2}}\left( {{a}^{2}}+9 \right)-4\left( {{a}^{2}}+9 \right)=0\].
\[\Rightarrow \left( {{a}^{2}}-4 \right)\left( {{a}^{2}}+9 \right)=0\].
\[\Rightarrow {{a}^{2}}-4=0\] or \[{{a}^{2}}+9=0\].
\[\Rightarrow {{a}^{2}}=4\] or \[{{a}^{2}}=-9\].
\[\Rightarrow a=\pm 2\] (we know that ${{a}^{2}}$ is always greater than zero so, we neglect \[{{a}^{2}}=-9\]).
Now, let us find the value of b by substituting the value of “a” in equation (2).
So, we get $b=\dfrac{6}{\pm 2}\Leftrightarrow b=\pm 3$.
Let us substitute this in equation (1) to get the square roots of the given complex number.
So, we get \[\pm \left( 2+3i \right)=\sqrt{-5+12i}\].
So, we have found the square root of the given complex number \[-5+12i\] as \[\pm \left( 2+3i \right)\].
$\therefore$ The square root of the complex number \[-5+12i\] is \[\pm \left( 2+3i \right)\].
Note: We should note that in a complex number $a+ib$, ‘a’ and ‘b’ are real numbers and this is the reason why we didn’t consider \[{{a}^{2}}=-9\]. We should not make calculation mistakes while solving this problem. We can also solve the problem by finding the exponential form of the given complex number and then find the square root of that exponential form which will require a good amount of calculation. Similarly, we can expect problems to find the Euler and exponential form of the given complex number.
Complete step-by-step solution:
According to the problem, we need to find the square root of the complex number \[-5+12i\].
Let us assume the square root of the given complex number \[-5+12i\] be \[a+bi\].
So, we get \[a+bi=\sqrt{-5+12i}\] ---(1).
Let us do square on both sides.
$\Rightarrow {{\left( a+bi \right)}^{2}}=-5+12i$.
$\Rightarrow {{a}^{2}}+{{\left( ib \right)}^{2}}+2\left( a \right)\left( ib \right)=-5+12i$.
$\Rightarrow {{a}^{2}}+{{i}^{2}}{{b}^{2}}+2iab=-5+12i$.
We know that ${{i}^{2}}=-1$.
$\Rightarrow {{a}^{2}}+\left( -1 \right){{b}^{2}}+2iab=-5+12i$.
$\Rightarrow {{a}^{2}}-{{b}^{2}}+2iab=-5+12i$.
$\Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)+\left( 2ab \right)i=-5+12i$.
Comparing real and imaginary parts on both sides, we get ${{a}^{2}}-{{b}^{2}}=-5$ and $2ab=12$.
Now, we have $2ab=12\Leftrightarrow b=\dfrac{6}{a}$ ---(2). Let us substitute this result in ${{a}^{2}}-{{b}^{2}}=-5$.
So, we get ${{a}^{2}}-{{\left( \dfrac{6}{a} \right)}^{2}}=-5$.
$\Rightarrow {{a}^{2}}-\dfrac{36}{{{a}^{2}}}=-5$.
$\Rightarrow \dfrac{{{a}^{4}}-36}{{{a}^{2}}}=-5$.
$\Rightarrow {{a}^{4}}-36=-5{{a}^{2}}$.
$\Rightarrow {{a}^{4}}+5{{a}^{2}}-36=0$.
\[\Rightarrow {{a}^{4}}+9{{a}^{2}}-4{{a}^{2}}-36=0\].
\[\Rightarrow {{a}^{2}}\left( {{a}^{2}}+9 \right)-4\left( {{a}^{2}}+9 \right)=0\].
\[\Rightarrow \left( {{a}^{2}}-4 \right)\left( {{a}^{2}}+9 \right)=0\].
\[\Rightarrow {{a}^{2}}-4=0\] or \[{{a}^{2}}+9=0\].
\[\Rightarrow {{a}^{2}}=4\] or \[{{a}^{2}}=-9\].
\[\Rightarrow a=\pm 2\] (we know that ${{a}^{2}}$ is always greater than zero so, we neglect \[{{a}^{2}}=-9\]).
Now, let us find the value of b by substituting the value of “a” in equation (2).
So, we get $b=\dfrac{6}{\pm 2}\Leftrightarrow b=\pm 3$.
Let us substitute this in equation (1) to get the square roots of the given complex number.
So, we get \[\pm \left( 2+3i \right)=\sqrt{-5+12i}\].
So, we have found the square root of the given complex number \[-5+12i\] as \[\pm \left( 2+3i \right)\].
$\therefore$ The square root of the complex number \[-5+12i\] is \[\pm \left( 2+3i \right)\].
Note: We should note that in a complex number $a+ib$, ‘a’ and ‘b’ are real numbers and this is the reason why we didn’t consider \[{{a}^{2}}=-9\]. We should not make calculation mistakes while solving this problem. We can also solve the problem by finding the exponential form of the given complex number and then find the square root of that exponential form which will require a good amount of calculation. Similarly, we can expect problems to find the Euler and exponential form of the given complex number.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

