
Find the square root of the complex number \[-5+12i\]?
Answer
563.7k+ views
Hint: We start solving the problem by assuming the square root of the given complex number. We then square them on both sides and compare the real and imaginary parts on both sides. We then make the necessary substitutions and calculations related to the real and imaginary parts of the square root to get the required result.
Complete step-by-step solution:
According to the problem, we need to find the square root of the complex number \[-5+12i\].
Let us assume the square root of the given complex number \[-5+12i\] be \[a+bi\].
So, we get \[a+bi=\sqrt{-5+12i}\] ---(1).
Let us do square on both sides.
$\Rightarrow {{\left( a+bi \right)}^{2}}=-5+12i$.
$\Rightarrow {{a}^{2}}+{{\left( ib \right)}^{2}}+2\left( a \right)\left( ib \right)=-5+12i$.
$\Rightarrow {{a}^{2}}+{{i}^{2}}{{b}^{2}}+2iab=-5+12i$.
We know that ${{i}^{2}}=-1$.
$\Rightarrow {{a}^{2}}+\left( -1 \right){{b}^{2}}+2iab=-5+12i$.
$\Rightarrow {{a}^{2}}-{{b}^{2}}+2iab=-5+12i$.
$\Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)+\left( 2ab \right)i=-5+12i$.
Comparing real and imaginary parts on both sides, we get ${{a}^{2}}-{{b}^{2}}=-5$ and $2ab=12$.
Now, we have $2ab=12\Leftrightarrow b=\dfrac{6}{a}$ ---(2). Let us substitute this result in ${{a}^{2}}-{{b}^{2}}=-5$.
So, we get ${{a}^{2}}-{{\left( \dfrac{6}{a} \right)}^{2}}=-5$.
$\Rightarrow {{a}^{2}}-\dfrac{36}{{{a}^{2}}}=-5$.
$\Rightarrow \dfrac{{{a}^{4}}-36}{{{a}^{2}}}=-5$.
$\Rightarrow {{a}^{4}}-36=-5{{a}^{2}}$.
$\Rightarrow {{a}^{4}}+5{{a}^{2}}-36=0$.
\[\Rightarrow {{a}^{4}}+9{{a}^{2}}-4{{a}^{2}}-36=0\].
\[\Rightarrow {{a}^{2}}\left( {{a}^{2}}+9 \right)-4\left( {{a}^{2}}+9 \right)=0\].
\[\Rightarrow \left( {{a}^{2}}-4 \right)\left( {{a}^{2}}+9 \right)=0\].
\[\Rightarrow {{a}^{2}}-4=0\] or \[{{a}^{2}}+9=0\].
\[\Rightarrow {{a}^{2}}=4\] or \[{{a}^{2}}=-9\].
\[\Rightarrow a=\pm 2\] (we know that ${{a}^{2}}$ is always greater than zero so, we neglect \[{{a}^{2}}=-9\]).
Now, let us find the value of b by substituting the value of “a” in equation (2).
So, we get $b=\dfrac{6}{\pm 2}\Leftrightarrow b=\pm 3$.
Let us substitute this in equation (1) to get the square roots of the given complex number.
So, we get \[\pm \left( 2+3i \right)=\sqrt{-5+12i}\].
So, we have found the square root of the given complex number \[-5+12i\] as \[\pm \left( 2+3i \right)\].
$\therefore$ The square root of the complex number \[-5+12i\] is \[\pm \left( 2+3i \right)\].
Note: We should note that in a complex number $a+ib$, ‘a’ and ‘b’ are real numbers and this is the reason why we didn’t consider \[{{a}^{2}}=-9\]. We should not make calculation mistakes while solving this problem. We can also solve the problem by finding the exponential form of the given complex number and then find the square root of that exponential form which will require a good amount of calculation. Similarly, we can expect problems to find the Euler and exponential form of the given complex number.
Complete step-by-step solution:
According to the problem, we need to find the square root of the complex number \[-5+12i\].
Let us assume the square root of the given complex number \[-5+12i\] be \[a+bi\].
So, we get \[a+bi=\sqrt{-5+12i}\] ---(1).
Let us do square on both sides.
$\Rightarrow {{\left( a+bi \right)}^{2}}=-5+12i$.
$\Rightarrow {{a}^{2}}+{{\left( ib \right)}^{2}}+2\left( a \right)\left( ib \right)=-5+12i$.
$\Rightarrow {{a}^{2}}+{{i}^{2}}{{b}^{2}}+2iab=-5+12i$.
We know that ${{i}^{2}}=-1$.
$\Rightarrow {{a}^{2}}+\left( -1 \right){{b}^{2}}+2iab=-5+12i$.
$\Rightarrow {{a}^{2}}-{{b}^{2}}+2iab=-5+12i$.
$\Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)+\left( 2ab \right)i=-5+12i$.
Comparing real and imaginary parts on both sides, we get ${{a}^{2}}-{{b}^{2}}=-5$ and $2ab=12$.
Now, we have $2ab=12\Leftrightarrow b=\dfrac{6}{a}$ ---(2). Let us substitute this result in ${{a}^{2}}-{{b}^{2}}=-5$.
So, we get ${{a}^{2}}-{{\left( \dfrac{6}{a} \right)}^{2}}=-5$.
$\Rightarrow {{a}^{2}}-\dfrac{36}{{{a}^{2}}}=-5$.
$\Rightarrow \dfrac{{{a}^{4}}-36}{{{a}^{2}}}=-5$.
$\Rightarrow {{a}^{4}}-36=-5{{a}^{2}}$.
$\Rightarrow {{a}^{4}}+5{{a}^{2}}-36=0$.
\[\Rightarrow {{a}^{4}}+9{{a}^{2}}-4{{a}^{2}}-36=0\].
\[\Rightarrow {{a}^{2}}\left( {{a}^{2}}+9 \right)-4\left( {{a}^{2}}+9 \right)=0\].
\[\Rightarrow \left( {{a}^{2}}-4 \right)\left( {{a}^{2}}+9 \right)=0\].
\[\Rightarrow {{a}^{2}}-4=0\] or \[{{a}^{2}}+9=0\].
\[\Rightarrow {{a}^{2}}=4\] or \[{{a}^{2}}=-9\].
\[\Rightarrow a=\pm 2\] (we know that ${{a}^{2}}$ is always greater than zero so, we neglect \[{{a}^{2}}=-9\]).
Now, let us find the value of b by substituting the value of “a” in equation (2).
So, we get $b=\dfrac{6}{\pm 2}\Leftrightarrow b=\pm 3$.
Let us substitute this in equation (1) to get the square roots of the given complex number.
So, we get \[\pm \left( 2+3i \right)=\sqrt{-5+12i}\].
So, we have found the square root of the given complex number \[-5+12i\] as \[\pm \left( 2+3i \right)\].
$\therefore$ The square root of the complex number \[-5+12i\] is \[\pm \left( 2+3i \right)\].
Note: We should note that in a complex number $a+ib$, ‘a’ and ‘b’ are real numbers and this is the reason why we didn’t consider \[{{a}^{2}}=-9\]. We should not make calculation mistakes while solving this problem. We can also solve the problem by finding the exponential form of the given complex number and then find the square root of that exponential form which will require a good amount of calculation. Similarly, we can expect problems to find the Euler and exponential form of the given complex number.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

