
Find the square root of $\sqrt {48} - \sqrt {45} $.
Answer
512.1k+ views
Hint: We will do prime factorization of value $48$ and $45$ separately and then we will use the formula of ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ to get the desired result.
Complete step by step solution:
The given values are $\sqrt {48} - \sqrt {45} $
We will do factorization of $\sqrt {48} $ and $\sqrt {45} $separately
\[
48 = 2 \times 2 \times 2 \times 2 \times 3 \\
48 = {2^2} \times {2^2} \times 3 \\
\] And \[
45 = 3 \times 3 \times 5 \\
45 = {3^2} \times 5 \\
\]
Then, \[\sqrt {48} - \sqrt {45} = \sqrt {{2^2} \times {2^2} \times 5} - \sqrt {{3^2} \times 5} \]
\[
\sqrt {48} - \sqrt {45} = 2 \times 2\sqrt 3 - 3\sqrt 5 \\
\sqrt {48} - \sqrt {45} = 4\sqrt 3 - 3\sqrt 5 \\
\]
Hence, the answer of $\sqrt {48} - \sqrt {45} = 4\sqrt 3 - 3\sqrt 5 $
Taking $\sqrt 3 $common on the right side, we have,
\[
= \sqrt 3 \left( {4 - \sqrt 3 \sqrt 5 } \right) \\
= \dfrac{{\sqrt 3 }}{2}2\left( {4 - \sqrt 3 \sqrt 5 } \right) \\
\]
$ = \dfrac{{\sqrt 3 }}{2}\left( {8 - 2\sqrt 3 \sqrt 5 } \right)$
We break $8$ into two parts such that it’s both value will be same as the value in root
$ = \dfrac{{\sqrt 3 }}{2}\left[ {5 + 3 - 2\sqrt 3 \sqrt 5 } \right]$
Here, we use the formula,${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$ = \dfrac{{\sqrt 3 }}{2}\left\{ {{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} - 2\sqrt 3 \sqrt 5 } \right\}$
$ = \dfrac{{\sqrt 3 }}{2}\left\{ {{{\left( {\sqrt 5 + \sqrt 3 } \right)}^2}} \right\}$
So, square root of$\sqrt {48} + \sqrt {45} = \pm {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^{\dfrac{1}{2}}}\sqrt {{{\left( {\sqrt 5 + \sqrt 3 } \right)}^2}} $
$ = \pm {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^{\dfrac{1}{2}}}\left( {\sqrt 5 + \sqrt 3 } \right)$
Note: Students should divide $8$ into two parts such that both values will be the same as the value in root. If we have taken these values accordingly then we can solve them otherwise we will not be able to find the correct answer.
Complete step by step solution:
The given values are $\sqrt {48} - \sqrt {45} $
We will do factorization of $\sqrt {48} $ and $\sqrt {45} $separately
$2$ | $48$ |
$2$ | $24$ |
$2$ | $12$ |
$2$ | $6$ |
$3$ | $3$ |
$1$ | |
$3$ | $45$ |
$3$ | $15$ |
$5$ | $5$ |
$1$ |
\[
48 = 2 \times 2 \times 2 \times 2 \times 3 \\
48 = {2^2} \times {2^2} \times 3 \\
\] And \[
45 = 3 \times 3 \times 5 \\
45 = {3^2} \times 5 \\
\]
Then, \[\sqrt {48} - \sqrt {45} = \sqrt {{2^2} \times {2^2} \times 5} - \sqrt {{3^2} \times 5} \]
\[
\sqrt {48} - \sqrt {45} = 2 \times 2\sqrt 3 - 3\sqrt 5 \\
\sqrt {48} - \sqrt {45} = 4\sqrt 3 - 3\sqrt 5 \\
\]
Hence, the answer of $\sqrt {48} - \sqrt {45} = 4\sqrt 3 - 3\sqrt 5 $
Taking $\sqrt 3 $common on the right side, we have,
\[
= \sqrt 3 \left( {4 - \sqrt 3 \sqrt 5 } \right) \\
= \dfrac{{\sqrt 3 }}{2}2\left( {4 - \sqrt 3 \sqrt 5 } \right) \\
\]
$ = \dfrac{{\sqrt 3 }}{2}\left( {8 - 2\sqrt 3 \sqrt 5 } \right)$
We break $8$ into two parts such that it’s both value will be same as the value in root
$ = \dfrac{{\sqrt 3 }}{2}\left[ {5 + 3 - 2\sqrt 3 \sqrt 5 } \right]$
Here, we use the formula,${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$ = \dfrac{{\sqrt 3 }}{2}\left\{ {{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} - 2\sqrt 3 \sqrt 5 } \right\}$
$ = \dfrac{{\sqrt 3 }}{2}\left\{ {{{\left( {\sqrt 5 + \sqrt 3 } \right)}^2}} \right\}$
So, square root of$\sqrt {48} + \sqrt {45} = \pm {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^{\dfrac{1}{2}}}\sqrt {{{\left( {\sqrt 5 + \sqrt 3 } \right)}^2}} $
$ = \pm {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^{\dfrac{1}{2}}}\left( {\sqrt 5 + \sqrt 3 } \right)$
Note: Students should divide $8$ into two parts such that both values will be the same as the value in root. If we have taken these values accordingly then we can solve them otherwise we will not be able to find the correct answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
