
Find the square root of $8 - 6i$ .
A.$ \pm \left( {3 - i} \right)$
B.$ \pm \left( {4 + 3i} \right)$
C.$ \pm \sqrt 3 \left( {1 - 3i} \right)$
D.None of these
Answer
554.4k+ views
Hint: To carry out the square root of any number which is complex (a number having real and imaginary part) use the identity of ${x^2} - {y^2}$ and$2xy$ .
Complete step-by-step answer:
Here the given expression is: $8 - 6i$
Where, the real part is 8 and the imaginary part is 6i.
The general form of the complex number is: $x + iy$
Taking the given expression equal to general form then we get,
$ \Rightarrow x + iy = \sqrt {8 - 6i} $
Taking square to both sides in the given equation then we get,
$
\Rightarrow {\left( {x + iy} \right)^2} = {\left( {\sqrt {8 - 6i} } \right)^2}\\
\Rightarrow {x^2} + {\left( {iy} \right)^2} + 2ixy = 8 - 6i $
Here value of ${i^2}$ is -1 substituting the value in the equation then we get,
$
\Rightarrow {x^2} + {i^2}{y^2} + 2ixy = 8 - 6i\\
\Rightarrow {x^2} + \left( { - 1 \times {y^2}} \right) + 2ixy = 8 - 6i\\
\Rightarrow {x^2} - {y^2} + 2ixy = 8 - 6i
$
Separating the real part and the imaginary part then we get,
$
\Rightarrow {x^2} - {y^2} = 8,\;2ixy = - 6i\\
\Rightarrow {x^2} - {y^2} = 8..............................(i)\\
\Rightarrow 2xy = - 6................................(ii)
$
Taking equation (ii) then we get,
$
2xy = - 6\\
xy = - 3\\
x = \dfrac{{ - 3}}{y}
$
Substituting the value of x in the equation (i) then we get,
$
\Rightarrow {\left( {\dfrac{{ - 3}}{y}} \right)^2} - {y^2} = 8\\
\Rightarrow 9 - {y^4} = 8{y^2}\\
\Rightarrow {y^4} + 8{y^2} - 9 = 0
$
Solving the equation using the middle term splitting method then we get,
$
\Rightarrow {y^4} + 8{y^2} - 9 = 0\\
\Rightarrow {y^4} + 9{y^2} - {y^2} - 9 = 0
$
Taking ${y^2}$ common from first two terms and -1 common from last two terms then we get,
$
\Rightarrow {y^2}\left( {{y^2} + 9} \right) - 1\left( {{y^2} + 9} \right) = 0\\
\Rightarrow \left( {{y^2} + 9} \right)\left( {{y^2} - 1} \right) = 0
$
Getting the values by taking the square roots to left hand side then we get,
$
\Rightarrow \left( {{y^2} + 9} \right) = 0,\;\left( {{y^2} - 1} \right) = 0\\
\Rightarrow {y^2} = - 9,\;{y^2} = 1\\
\Rightarrow y = \sqrt { - 9} ,\;y = \sqrt 1
$
Since neglecting the negative value then we get,
$y = 1, - 1$
If we take $y = 1$ then $x = \dfrac{{ - 3}}{y} = \dfrac{{ - 3}}{1} = - 3$
If we take $y = - 1$ then $x = \dfrac{{ - 3}}{{ - 1}} = \dfrac{3}{1} = 3$
Hence the square root of the given complex expression $8 - 6i$ is $ \pm \left( {3 - i} \right)$
As there x is the real part and y is the imaginary party of the expression.
So, the correct answer is “Option A”.
Note: In this type of problem, we have to find the square of the complex number so, separate the real and imaginary part then carry out the square of the imaginary as well real part. This will make the square root of the given complex number.
Complete step-by-step answer:
Here the given expression is: $8 - 6i$
Where, the real part is 8 and the imaginary part is 6i.
The general form of the complex number is: $x + iy$
Taking the given expression equal to general form then we get,
$ \Rightarrow x + iy = \sqrt {8 - 6i} $
Taking square to both sides in the given equation then we get,
$
\Rightarrow {\left( {x + iy} \right)^2} = {\left( {\sqrt {8 - 6i} } \right)^2}\\
\Rightarrow {x^2} + {\left( {iy} \right)^2} + 2ixy = 8 - 6i $
Here value of ${i^2}$ is -1 substituting the value in the equation then we get,
$
\Rightarrow {x^2} + {i^2}{y^2} + 2ixy = 8 - 6i\\
\Rightarrow {x^2} + \left( { - 1 \times {y^2}} \right) + 2ixy = 8 - 6i\\
\Rightarrow {x^2} - {y^2} + 2ixy = 8 - 6i
$
Separating the real part and the imaginary part then we get,
$
\Rightarrow {x^2} - {y^2} = 8,\;2ixy = - 6i\\
\Rightarrow {x^2} - {y^2} = 8..............................(i)\\
\Rightarrow 2xy = - 6................................(ii)
$
Taking equation (ii) then we get,
$
2xy = - 6\\
xy = - 3\\
x = \dfrac{{ - 3}}{y}
$
Substituting the value of x in the equation (i) then we get,
$
\Rightarrow {\left( {\dfrac{{ - 3}}{y}} \right)^2} - {y^2} = 8\\
\Rightarrow 9 - {y^4} = 8{y^2}\\
\Rightarrow {y^4} + 8{y^2} - 9 = 0
$
Solving the equation using the middle term splitting method then we get,
$
\Rightarrow {y^4} + 8{y^2} - 9 = 0\\
\Rightarrow {y^4} + 9{y^2} - {y^2} - 9 = 0
$
Taking ${y^2}$ common from first two terms and -1 common from last two terms then we get,
$
\Rightarrow {y^2}\left( {{y^2} + 9} \right) - 1\left( {{y^2} + 9} \right) = 0\\
\Rightarrow \left( {{y^2} + 9} \right)\left( {{y^2} - 1} \right) = 0
$
Getting the values by taking the square roots to left hand side then we get,
$
\Rightarrow \left( {{y^2} + 9} \right) = 0,\;\left( {{y^2} - 1} \right) = 0\\
\Rightarrow {y^2} = - 9,\;{y^2} = 1\\
\Rightarrow y = \sqrt { - 9} ,\;y = \sqrt 1
$
Since neglecting the negative value then we get,
$y = 1, - 1$
If we take $y = 1$ then $x = \dfrac{{ - 3}}{y} = \dfrac{{ - 3}}{1} = - 3$
If we take $y = - 1$ then $x = \dfrac{{ - 3}}{{ - 1}} = \dfrac{3}{1} = 3$
Hence the square root of the given complex expression $8 - 6i$ is $ \pm \left( {3 - i} \right)$
As there x is the real part and y is the imaginary party of the expression.
So, the correct answer is “Option A”.
Note: In this type of problem, we have to find the square of the complex number so, separate the real and imaginary part then carry out the square of the imaginary as well real part. This will make the square root of the given complex number.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

