Answer
Verified
446.1k+ views
Hint: We have \[7-4\sqrt{3},\] we are asked to find the square root. First, we will rearrange \[7-4\sqrt{3}\] in such a way that it is a square of some term. In order to rearrange, first, we will use \[2=\sqrt{4}\] and then split 7 = 3 + 4 using these. Then we will get \[7-4\sqrt{3}\] as \[{{\left( 2-\sqrt{3} \right)}^{2}}.\] So, taking the square root on both sides, we will get our solution.
Complete step-by-step answer:
So, we are asked to find the square root of \[7-4\sqrt{3}.\] To do so, we will try to write \[7-4\sqrt{3}\] in such a way that it is a square of some numbers by rearranging the terms. Now,
\[2=\sqrt{4}\]
So,
\[7-4\sqrt{3}=7-2\times \left( 2\sqrt{3} \right)\]
\[\Rightarrow 7-4\sqrt{3}=7-2\sqrt{4}\times \sqrt{3}\]
We can write,
\[\sqrt{4}\times \sqrt{3}=\sqrt{12}\]
So, we get,
\[\Rightarrow 7-2\sqrt{12}\]
Now, we will split 7 into 2 terms, i.e. 7 = 3 + 4. Now, putting this in the above term, we will get,
\[\Rightarrow 3+4-2\sqrt{12}\]
We can write 3 as \[{{\left( \sqrt{3} \right)}^{2}}\] and 4 as \[{{\left( \sqrt{4} \right)}^{2}}.\]
And so, we get,
\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\sqrt{12}\]
We can write, \[\sqrt{12}=\sqrt{3}\times \sqrt{4}.\]
\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\times \sqrt{3}\times \sqrt{4}\]
We know that, \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.\]
So, we get,
\[\Rightarrow {{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]
Hence, we have,
\[7-2\sqrt{3}={{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]
Also, we know that \[\sqrt{4}=2,\] so we get,
\[\left( 7-2\sqrt{3} \right)={{\left( 2-\sqrt{3} \right)}^{2}}\]
Now taking the square root on both the sides, we get,
\[\Rightarrow \sqrt{7-2\sqrt{3}}=\sqrt{{{\left( 2-\sqrt{3} \right)}^{2}}}\]
On further simplification, we get,
\[\sqrt{7-2\sqrt{3}}=2-\sqrt{3}\]
So, the correct answer is “Option C”.
Note: Another way to look for the square root is, we have 4 options, so we will square each option and see which will end up as \[7-2\sqrt{3}\] and that would be the correct option.
\[\left( a \right)2+\sqrt{3}\]
Squaring \[2+\sqrt{3},\] we get,
\[{{\left( 2+\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}+2\times \sqrt{3}\times 2\]
\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=4+3+4\sqrt{3}\]
\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=7+4\sqrt{3}\]
Hence, \[7+4\sqrt{3}\ne 7-4\sqrt{3}\]
Thus, option (a) is not our required answer.
\[\left( b \right)\left( 5-\sqrt{3} \right)\]
Squaring \[\left( 5-\sqrt{3} \right),\] we get,
\[\Rightarrow \left( 5-\sqrt{3} \right)={{5}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-5\times 2\times \sqrt{3}\]
We know that, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.\]
\[\Rightarrow \left( 5-\sqrt{3} \right)=25+3-10\sqrt{3}\]
\[\Rightarrow {{\left( 5-\sqrt{3} \right)}^{2}}=28-10\sqrt{3}\]
Hence, \[5-\sqrt{3}\ne 7-4\sqrt{3}\]
Thus, option (b) is not our required answer.
\[\left( c \right)2-\sqrt{3}\]
Squaring \[\left( 2-\sqrt{3} \right),\] we get,
\[{{\left( 2-\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-2\times 2\times \sqrt{3}\]
\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=4+3-4\sqrt{3}\]
\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=7-4\sqrt{3}\]
Hence, \[7-4\sqrt{3}=7-4\sqrt{3}\]
Thus, option (c) is our required answer.
Complete step-by-step answer:
So, we are asked to find the square root of \[7-4\sqrt{3}.\] To do so, we will try to write \[7-4\sqrt{3}\] in such a way that it is a square of some numbers by rearranging the terms. Now,
\[2=\sqrt{4}\]
So,
\[7-4\sqrt{3}=7-2\times \left( 2\sqrt{3} \right)\]
\[\Rightarrow 7-4\sqrt{3}=7-2\sqrt{4}\times \sqrt{3}\]
We can write,
\[\sqrt{4}\times \sqrt{3}=\sqrt{12}\]
So, we get,
\[\Rightarrow 7-2\sqrt{12}\]
Now, we will split 7 into 2 terms, i.e. 7 = 3 + 4. Now, putting this in the above term, we will get,
\[\Rightarrow 3+4-2\sqrt{12}\]
We can write 3 as \[{{\left( \sqrt{3} \right)}^{2}}\] and 4 as \[{{\left( \sqrt{4} \right)}^{2}}.\]
And so, we get,
\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\sqrt{12}\]
We can write, \[\sqrt{12}=\sqrt{3}\times \sqrt{4}.\]
\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\times \sqrt{3}\times \sqrt{4}\]
We know that, \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.\]
So, we get,
\[\Rightarrow {{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]
Hence, we have,
\[7-2\sqrt{3}={{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]
Also, we know that \[\sqrt{4}=2,\] so we get,
\[\left( 7-2\sqrt{3} \right)={{\left( 2-\sqrt{3} \right)}^{2}}\]
Now taking the square root on both the sides, we get,
\[\Rightarrow \sqrt{7-2\sqrt{3}}=\sqrt{{{\left( 2-\sqrt{3} \right)}^{2}}}\]
On further simplification, we get,
\[\sqrt{7-2\sqrt{3}}=2-\sqrt{3}\]
So, the correct answer is “Option C”.
Note: Another way to look for the square root is, we have 4 options, so we will square each option and see which will end up as \[7-2\sqrt{3}\] and that would be the correct option.
\[\left( a \right)2+\sqrt{3}\]
Squaring \[2+\sqrt{3},\] we get,
\[{{\left( 2+\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}+2\times \sqrt{3}\times 2\]
\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=4+3+4\sqrt{3}\]
\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=7+4\sqrt{3}\]
Hence, \[7+4\sqrt{3}\ne 7-4\sqrt{3}\]
Thus, option (a) is not our required answer.
\[\left( b \right)\left( 5-\sqrt{3} \right)\]
Squaring \[\left( 5-\sqrt{3} \right),\] we get,
\[\Rightarrow \left( 5-\sqrt{3} \right)={{5}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-5\times 2\times \sqrt{3}\]
We know that, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.\]
\[\Rightarrow \left( 5-\sqrt{3} \right)=25+3-10\sqrt{3}\]
\[\Rightarrow {{\left( 5-\sqrt{3} \right)}^{2}}=28-10\sqrt{3}\]
Hence, \[5-\sqrt{3}\ne 7-4\sqrt{3}\]
Thus, option (b) is not our required answer.
\[\left( c \right)2-\sqrt{3}\]
Squaring \[\left( 2-\sqrt{3} \right),\] we get,
\[{{\left( 2-\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-2\times 2\times \sqrt{3}\]
\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=4+3-4\sqrt{3}\]
\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=7-4\sqrt{3}\]
Hence, \[7-4\sqrt{3}=7-4\sqrt{3}\]
Thus, option (c) is our required answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE