# Find the square root of \[7-4\sqrt{3}.\]

\[\left( a \right)2+\sqrt{3}\]

\[\left( b \right)5-\sqrt{3}\]

\[\left( c \right)2-\sqrt{3}\]

\[\left( d \right)5+\sqrt{3}\]

Verified

140.7k+ views

**Hint**: We have \[7-4\sqrt{3},\] we are asked to find the square root. First, we will rearrange \[7-4\sqrt{3}\] in such a way that it is a square of some term. In order to rearrange, first, we will use \[2=\sqrt{4}\] and then split 7 = 3 + 4 using these. Then we will get \[7-4\sqrt{3}\] as \[{{\left( 2-\sqrt{3} \right)}^{2}}.\] So, taking the square root on both sides, we will get our solution.

**:**

__Complete step-by-step answer__So, we are asked to find the square root of \[7-4\sqrt{3}.\] To do so, we will try to write \[7-4\sqrt{3}\] in such a way that it is a square of some numbers by rearranging the terms. Now,

\[2=\sqrt{4}\]

So,

\[7-4\sqrt{3}=7-2\times \left( 2\sqrt{3} \right)\]

\[\Rightarrow 7-4\sqrt{3}=7-2\sqrt{4}\times \sqrt{3}\]

We can write,

\[\sqrt{4}\times \sqrt{3}=\sqrt{12}\]

So, we get,

\[\Rightarrow 7-2\sqrt{12}\]

Now, we will split 7 into 2 terms, i.e. 7 = 3 + 4. Now, putting this in the above term, we will get,

\[\Rightarrow 3+4-2\sqrt{12}\]

We can write 3 as \[{{\left( \sqrt{3} \right)}^{2}}\] and 4 as \[{{\left( \sqrt{4} \right)}^{2}}.\]

And so, we get,

\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\sqrt{12}\]

We can write, \[\sqrt{12}=\sqrt{3}\times \sqrt{4}.\]

\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\times \sqrt{3}\times \sqrt{4}\]

We know that, \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.\]

So, we get,

\[\Rightarrow {{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]

Hence, we have,

\[7-2\sqrt{3}={{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]

Also, we know that \[\sqrt{4}=2,\] so we get,

\[\left( 7-2\sqrt{3} \right)={{\left( 2-\sqrt{3} \right)}^{2}}\]

Now taking the square root on both the sides, we get,

\[\Rightarrow \sqrt{7-2\sqrt{3}}=\sqrt{{{\left( 2-\sqrt{3} \right)}^{2}}}\]

On further simplification, we get,

\[\sqrt{7-2\sqrt{3}}=2-\sqrt{3}\]

**So, the correct answer is “Option C”.**

**Note**: Another way to look for the square root is, we have 4 options, so we will square each option and see which will end up as \[7-2\sqrt{3}\] and that would be the correct option.

\[\left( a \right)2+\sqrt{3}\]

Squaring \[2+\sqrt{3},\] we get,

\[{{\left( 2+\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}+2\times \sqrt{3}\times 2\]

\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=4+3+4\sqrt{3}\]

\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=7+4\sqrt{3}\]

Hence, \[7+4\sqrt{3}\ne 7-4\sqrt{3}\]

Thus, option (a) is not our required answer.

\[\left( b \right)\left( 5-\sqrt{3} \right)\]

Squaring \[\left( 5-\sqrt{3} \right),\] we get,

\[\Rightarrow \left( 5-\sqrt{3} \right)={{5}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-5\times 2\times \sqrt{3}\]

We know that, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.\]

\[\Rightarrow \left( 5-\sqrt{3} \right)=25+3-10\sqrt{3}\]

\[\Rightarrow {{\left( 5-\sqrt{3} \right)}^{2}}=28-10\sqrt{3}\]

Hence, \[5-\sqrt{3}\ne 7-4\sqrt{3}\]

Thus, option (b) is not our required answer.

\[\left( c \right)2-\sqrt{3}\]

Squaring \[\left( 2-\sqrt{3} \right),\] we get,

\[{{\left( 2-\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-2\times 2\times \sqrt{3}\]

\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=4+3-4\sqrt{3}\]

\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=7-4\sqrt{3}\]

Hence, \[7-4\sqrt{3}=7-4\sqrt{3}\]

Thus, option (c) is our required answer.