Answer
Verified
446.4k+ views
Hint: To find the square root of the given number $63504$, we will use prime factorisation method. We will write that number as the multiple of the primes. After that it will be written in the form of a group of two. Then, we will select one prime number from each group and multiply all such prime numbers. The square root of $63504$ will be the product of selected prime numbers.
Complete step by step solution: To solve the given problem, we must know the prime factorisation method. By using the method of prime factorisation, we can express the given number as a product of prime numbers. Therefore, we will write the given number $63504$ as the product of primes. Let us do a prime factorisation of $63504$. Note that here $63504$ is an even number so we can start prime factorisation with prime number $2$.
Therefore, we can write $63504 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7 \times 7$.Now we will take the same prime numbers together and write them in groups of two as shown below.$63504 = \left( {2 \times 2} \right) \times \left( {2 \times 2} \right) \times \left( {3 \times 3} \right) \times \left( {3 \times 3} \right) \times \left( {7 \times 7} \right)$. Now we will take one number from each group. Therefore, we will get $2,2,3,3$ and $7$ from the first, second, third, fourth and fifth group respectively. Hence, the square root of $63504$ will be the product of these numbers $2,2,3,3$ and $7$.Therefore, $\sqrt {63504} = \sqrt {{2^2} \times {2^2} \times {3^2} \times {3^2} \times {7^2}} $.$ \Rightarrow \sqrt {63504} = 2 \times 2 \times 3 \times 3 \times 7$
$ \Rightarrow \sqrt {63504} = 252$
Therefore, the square root of $63504$ is $252$.
Note: If the number is even then it is divisible by $2$. If the sum of all digits of a number is divisible by $3$ then that number is divisible by $3$. Double the last digit of the number and subtract the doubled number from the remaining number (remaining digits). If the result is divisible by $7$ then that number is divisible by $7$. Note that here we will consider positive differences. In the given problem, $49$ is divisible by $7$ because double of last digit $9$ is $18$ and positive difference of $18$ and remaining number (remaining digit) $4$ is $14$ and the number $14$ is divisible by $7$.
Complete step by step solution: To solve the given problem, we must know the prime factorisation method. By using the method of prime factorisation, we can express the given number as a product of prime numbers. Therefore, we will write the given number $63504$ as the product of primes. Let us do a prime factorisation of $63504$. Note that here $63504$ is an even number so we can start prime factorisation with prime number $2$.
$2$ | $63504$ |
$2$ | $31752$ |
$2$ | $15876$ |
$2$ | $7938$ |
$3$ | $3969$ |
$3$ | $1323$ |
$3$ | $441$ |
$3$ | $147$ |
$7$ | $49$ |
$7$ | $7$ |
$1$ |
Therefore, we can write $63504 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7 \times 7$.Now we will take the same prime numbers together and write them in groups of two as shown below.$63504 = \left( {2 \times 2} \right) \times \left( {2 \times 2} \right) \times \left( {3 \times 3} \right) \times \left( {3 \times 3} \right) \times \left( {7 \times 7} \right)$. Now we will take one number from each group. Therefore, we will get $2,2,3,3$ and $7$ from the first, second, third, fourth and fifth group respectively. Hence, the square root of $63504$ will be the product of these numbers $2,2,3,3$ and $7$.Therefore, $\sqrt {63504} = \sqrt {{2^2} \times {2^2} \times {3^2} \times {3^2} \times {7^2}} $.$ \Rightarrow \sqrt {63504} = 2 \times 2 \times 3 \times 3 \times 7$
$ \Rightarrow \sqrt {63504} = 252$
Therefore, the square root of $63504$ is $252$.
Note: If the number is even then it is divisible by $2$. If the sum of all digits of a number is divisible by $3$ then that number is divisible by $3$. Double the last digit of the number and subtract the doubled number from the remaining number (remaining digits). If the result is divisible by $7$ then that number is divisible by $7$. Note that here we will consider positive differences. In the given problem, $49$ is divisible by $7$ because double of last digit $9$ is $18$ and positive difference of $18$ and remaining number (remaining digit) $4$ is $14$ and the number $14$ is divisible by $7$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE