
Find the square root of 14641 by repeated subtraction.
Answer
540k+ views
Hint:
Here, we will find the square root of the given number in the repeated subtraction method by subtracting the successive odd integers from the number. This process of subtraction continues until the difference becomes zero. The step at which the result is obtained is known as the square root of the number.
Complete step by step solution:
We are given the number 14641 . We will find the square root of the number by repeated subtraction.
We know that the property of square numbers states that if a natural number is a square number, then it has to written as the sum of successive odd numbers starting from the first odd integer as 1.
We will start the repeated subtraction method by subtracting the odd integer 1 from the number. We will continue the process with consecutive odd integers.
\[\begin{array}{l}14641 - 1 = 14640\\14640 - 3 = 14637\\14637 - 5 = 14632\\14632 - 7 = 14625\\14625 - 9 = 14616\end{array}\]
\[\begin{array}{l}14616 - 11 = 14605\\14605 - 13 = 14592\\14592 - 15 = 14577\\14577 - 17 = 14560\\14560 - 19 = 14541\end{array}\]
\[\begin{array}{l}14541 - 21 = 14520\\14520 - 23 = 14497\\14497 - 25 = 14472\\14472 - 27 = 14445\\14445 - 29 = 14416\end{array}\]
\[\begin{array}{l}14416 - 31 = 14385\\14385 - 33 = 14352\\14352 - 35 = 14317\\14317 - 37 = 14280\\14280 - 39 = 14241\end{array}\]
\[\begin{array}{l}14241 - 41 = 14200\\14200 - 43 = 14157\\14157 - 45 = 14112\\14112 - 47 = 14065\\14065 - 49 = 14016\end{array}\]
\[\begin{array}{l}14016 - 51 = 13965\\13965 - 53 = 13912\\13912 - 55 = 13857\\13857 - 57 = 13800\\13800 - 59 = 13741\end{array}\]
\[\begin{array}{l}13741 - 61 = 13680\\13680 - 63 = 13617\\13617 - 65 = 13552\\13552 - 67 = 13485\\13485 - 69 = 13416\end{array}\]
\[\begin{array}{l}13416 - 71 = 13345\\13345 - 73 = 13272\\13272 - 75 = 13197\\13197 - 77 = 13120\\13120 - 79 = 13041\end{array}\]
\[\begin{array}{l}13041 - 81 = 12960\\12960 - 83 = 12877\\12877 - 85 = 12792\\12792 - 87 = 12705\\12705 - 89 = 12616\end{array}\]
\[\begin{array}{l}12616 - 91 = 12525\\12525 - 93 = 12432\\12432 - 95 = 12337\\12337 - 97 = 12240\\12240 - 99 = 12141\end{array}\]
\[\begin{array}{l}12141 - 101 = 12040\\12040 - 103 = 11937\\11937 - 105 = 11832\\11832 - 107 = 11725\\11725 - 109 = 11616\end{array}\]
\[\begin{array}{l}11616 - 111 = 11505\\11505 - 113 = 11392\\11392 - 115 = 11277\\11277 - 117 = 11160\\11160 - 119 = 11041\end{array}\]
\[\begin{array}{l}11041 - 121 = 10920\\10920 - 123 = 10797\\10797 - 125 = 10672\\10672 - 127 = 10545\\10545 - 129 = 10416\end{array}\]
\[\begin{array}{l}10416 - 131 = 10285\\10285 - 133 = 10152\\10152 - 135 = 10017\\10017 - 137 = 9880\\9880 - 139 = 9741\end{array}\]
\[\begin{array}{l}9741 - 141 = 9600\\9600 - 143 = 9457\\9457 - 145 = 9312\\9312 - 147 = 9165\\9165 - 149 = 9016\end{array}\]
\[\begin{array}{l}9016 - 151 = 8865\\8865 - 153 = 8712\\8712 - 155 = 8557\\8557 - 157 = 8400\\8400 - 159 = 8241\end{array}\]
\[\begin{array}{l}8241 - 161 = 8080\\8080 - 163 = 7917\\7917 - 165 = 7752\\7752 - 167 = 7585\\7585 - 169 = 7416\end{array}\]
\[\begin{array}{l}7416 - 171 = 7245\\7245 - 173 = 7072\\7072 - 175 = 6897\\6897 - 177 = 6720\\6720 - 179 = 6541\end{array}\]
\[\begin{array}{l}6541 - 181 = 6360\\6360 - 183 = 6177\\6177 - 185 = 5992\\5992 - 187 = 5805\\5805 - 189 = 5616\end{array}\]
\[\begin{array}{l}5616 - 191 = 5425\\5425 - 193 = 5232\\5232 - 195 = 5037\\5037 - 197 = 4840\\4840 - 199 = 4641\end{array}\]
\[\begin{array}{l}4641 - 201 = 4440\\4440 - 203 = 4237\\4237 - 205 = 4032\\4032 - 207 = 3825\\3825 - 209 = 3616\end{array}\]
\[\begin{array}{l}3616 - 211 = 3405\\3405 - 213 = 3192\\3192 - 215 = 2977\\2977 - 217 = 2760\\2760 - 219 = 2541\end{array}\]
\[\begin{array}{l}2541 - 221 = 2320\\2320 - 223 = 2097\\2097 - 225 = 1872\\1872 - 227 = 1645\\1645 - 229 = 1416\end{array}\]
\[\begin{array}{l}1416 - 231 = 1185\\1185 - 233 = 952\\952 - 235 = 717\\717 - 237 = 480\\480 - 239 = 241\\241 - 241 = 0\end{array}\]
Thus, we got the result as \[0\] in the \[121th\] step, so the square root of the number \[14641\] is \[121\] i.e., \[\sqrt {14641} = 121\]
Therefore, the square root of the number \[14641\] is \[121\].
Note:
We can also find the square root of the number by prime factorization method, long division method, number line method and average method. Prime factorization method and Repeated Subtraction method is applicable only when the given number is a perfect square number. We should always remember that the square root of a number is the step at which zero is obtained and not the number which is subtracted.
Here, we will find the square root of the given number in the repeated subtraction method by subtracting the successive odd integers from the number. This process of subtraction continues until the difference becomes zero. The step at which the result is obtained is known as the square root of the number.
Complete step by step solution:
We are given the number 14641 . We will find the square root of the number by repeated subtraction.
We know that the property of square numbers states that if a natural number is a square number, then it has to written as the sum of successive odd numbers starting from the first odd integer as 1.
We will start the repeated subtraction method by subtracting the odd integer 1 from the number. We will continue the process with consecutive odd integers.
\[\begin{array}{l}14641 - 1 = 14640\\14640 - 3 = 14637\\14637 - 5 = 14632\\14632 - 7 = 14625\\14625 - 9 = 14616\end{array}\]
\[\begin{array}{l}14616 - 11 = 14605\\14605 - 13 = 14592\\14592 - 15 = 14577\\14577 - 17 = 14560\\14560 - 19 = 14541\end{array}\]
\[\begin{array}{l}14541 - 21 = 14520\\14520 - 23 = 14497\\14497 - 25 = 14472\\14472 - 27 = 14445\\14445 - 29 = 14416\end{array}\]
\[\begin{array}{l}14416 - 31 = 14385\\14385 - 33 = 14352\\14352 - 35 = 14317\\14317 - 37 = 14280\\14280 - 39 = 14241\end{array}\]
\[\begin{array}{l}14241 - 41 = 14200\\14200 - 43 = 14157\\14157 - 45 = 14112\\14112 - 47 = 14065\\14065 - 49 = 14016\end{array}\]
\[\begin{array}{l}14016 - 51 = 13965\\13965 - 53 = 13912\\13912 - 55 = 13857\\13857 - 57 = 13800\\13800 - 59 = 13741\end{array}\]
\[\begin{array}{l}13741 - 61 = 13680\\13680 - 63 = 13617\\13617 - 65 = 13552\\13552 - 67 = 13485\\13485 - 69 = 13416\end{array}\]
\[\begin{array}{l}13416 - 71 = 13345\\13345 - 73 = 13272\\13272 - 75 = 13197\\13197 - 77 = 13120\\13120 - 79 = 13041\end{array}\]
\[\begin{array}{l}13041 - 81 = 12960\\12960 - 83 = 12877\\12877 - 85 = 12792\\12792 - 87 = 12705\\12705 - 89 = 12616\end{array}\]
\[\begin{array}{l}12616 - 91 = 12525\\12525 - 93 = 12432\\12432 - 95 = 12337\\12337 - 97 = 12240\\12240 - 99 = 12141\end{array}\]
\[\begin{array}{l}12141 - 101 = 12040\\12040 - 103 = 11937\\11937 - 105 = 11832\\11832 - 107 = 11725\\11725 - 109 = 11616\end{array}\]
\[\begin{array}{l}11616 - 111 = 11505\\11505 - 113 = 11392\\11392 - 115 = 11277\\11277 - 117 = 11160\\11160 - 119 = 11041\end{array}\]
\[\begin{array}{l}11041 - 121 = 10920\\10920 - 123 = 10797\\10797 - 125 = 10672\\10672 - 127 = 10545\\10545 - 129 = 10416\end{array}\]
\[\begin{array}{l}10416 - 131 = 10285\\10285 - 133 = 10152\\10152 - 135 = 10017\\10017 - 137 = 9880\\9880 - 139 = 9741\end{array}\]
\[\begin{array}{l}9741 - 141 = 9600\\9600 - 143 = 9457\\9457 - 145 = 9312\\9312 - 147 = 9165\\9165 - 149 = 9016\end{array}\]
\[\begin{array}{l}9016 - 151 = 8865\\8865 - 153 = 8712\\8712 - 155 = 8557\\8557 - 157 = 8400\\8400 - 159 = 8241\end{array}\]
\[\begin{array}{l}8241 - 161 = 8080\\8080 - 163 = 7917\\7917 - 165 = 7752\\7752 - 167 = 7585\\7585 - 169 = 7416\end{array}\]
\[\begin{array}{l}7416 - 171 = 7245\\7245 - 173 = 7072\\7072 - 175 = 6897\\6897 - 177 = 6720\\6720 - 179 = 6541\end{array}\]
\[\begin{array}{l}6541 - 181 = 6360\\6360 - 183 = 6177\\6177 - 185 = 5992\\5992 - 187 = 5805\\5805 - 189 = 5616\end{array}\]
\[\begin{array}{l}5616 - 191 = 5425\\5425 - 193 = 5232\\5232 - 195 = 5037\\5037 - 197 = 4840\\4840 - 199 = 4641\end{array}\]
\[\begin{array}{l}4641 - 201 = 4440\\4440 - 203 = 4237\\4237 - 205 = 4032\\4032 - 207 = 3825\\3825 - 209 = 3616\end{array}\]
\[\begin{array}{l}3616 - 211 = 3405\\3405 - 213 = 3192\\3192 - 215 = 2977\\2977 - 217 = 2760\\2760 - 219 = 2541\end{array}\]
\[\begin{array}{l}2541 - 221 = 2320\\2320 - 223 = 2097\\2097 - 225 = 1872\\1872 - 227 = 1645\\1645 - 229 = 1416\end{array}\]
\[\begin{array}{l}1416 - 231 = 1185\\1185 - 233 = 952\\952 - 235 = 717\\717 - 237 = 480\\480 - 239 = 241\\241 - 241 = 0\end{array}\]
Thus, we got the result as \[0\] in the \[121th\] step, so the square root of the number \[14641\] is \[121\] i.e., \[\sqrt {14641} = 121\]
Therefore, the square root of the number \[14641\] is \[121\].
Note:
We can also find the square root of the number by prime factorization method, long division method, number line method and average method. Prime factorization method and Repeated Subtraction method is applicable only when the given number is a perfect square number. We should always remember that the square root of a number is the step at which zero is obtained and not the number which is subtracted.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


