
How do you find the square root of \[14,400?\]
Answer
538.5k+ views
Hint:The given question involves the operation of addition/ subtraction/ multiplication/ division. To solve these types of problems we need to know the square values of basic terms. It doesn’t involve any arithmetic formulae, it is completely involved in arithmetic operations. We need to know the process of finding the square root of the given term without using a scientific calculator.
Complete step by step solution:
In this question, we would find the square root value \[14,400\] without using a calculator. The following steps show the operations of finding the square root of \[14,400\].
\[divisor\mathop{\left){\vphantom{1{dividend}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{dividend}}}}
\limits^{\displaystyle \,\,\, {quotient}}\]
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {120}}\]
First, we have to solve the first number \[1\] \[14400\]. As a next step, we have to find the square root \[1\]. So, we know that the square root of \[1\] is \[1\]. So, let’s write \[1\] as a divisor and quotient.
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
}}}
\limits^{\displaystyle \,\,\, 1}\]
When we subtract\[1\]and\[1\], we get zero. Next, we drop the next two numbers.
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {12}}\]
The first divisor is multiplied with\[2\]and take as the first digit of the second divisor. So, we
put\[2\]as a divisor and quotient. So, we get\[22\]as a nest divisor. After
subtracting\[44\]and\[44\]we get\[0\].
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {120}}\]
The last digit of the second divisor is multiplied by two and taken as the first two digits of the third divisor. Next, we drop two zero from the dividend. So, we know that \[0 \times 0\] is \[0\]. So, let’s take \[0\] a quotient as a part of the divisor.
So, the final answer is,
The square root \[14400\] is equal to \[120\].
Note: For finding the square root of a given value we use the operation of addition/ subtraction/ multiplication/ division. If the negative sign is involved inside the square root consider it as a positive number and follow the above-mentioned operation by adding \[i\]with a final answer for a negative sign of square root term. For each next step, we would multiply the last digit of the divisor by\[2\].
Complete step by step solution:
In this question, we would find the square root value \[14,400\] without using a calculator. The following steps show the operations of finding the square root of \[14,400\].
\[divisor\mathop{\left){\vphantom{1{dividend}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{dividend}}}}
\limits^{\displaystyle \,\,\, {quotient}}\]
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {120}}\]
First, we have to solve the first number \[1\] \[14400\]. As a next step, we have to find the square root \[1\]. So, we know that the square root of \[1\] is \[1\]. So, let’s write \[1\] as a divisor and quotient.
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
}}}
\limits^{\displaystyle \,\,\, 1}\]
When we subtract\[1\]and\[1\], we get zero. Next, we drop the next two numbers.
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {12}}\]
The first divisor is multiplied with\[2\]and take as the first digit of the second divisor. So, we
put\[2\]as a divisor and quotient. So, we get\[22\]as a nest divisor. After
subtracting\[44\]and\[44\]we get\[0\].
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {120}}\]
The last digit of the second divisor is multiplied by two and taken as the first two digits of the third divisor. Next, we drop two zero from the dividend. So, we know that \[0 \times 0\] is \[0\]. So, let’s take \[0\] a quotient as a part of the divisor.
So, the final answer is,
The square root \[14400\] is equal to \[120\].
Note: For finding the square root of a given value we use the operation of addition/ subtraction/ multiplication/ division. If the negative sign is involved inside the square root consider it as a positive number and follow the above-mentioned operation by adding \[i\]with a final answer for a negative sign of square root term. For each next step, we would multiply the last digit of the divisor by\[2\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

