
How do you find the square root of \[14,400?\]
Answer
537.3k+ views
Hint:The given question involves the operation of addition/ subtraction/ multiplication/ division. To solve these types of problems we need to know the square values of basic terms. It doesn’t involve any arithmetic formulae, it is completely involved in arithmetic operations. We need to know the process of finding the square root of the given term without using a scientific calculator.
Complete step by step solution:
In this question, we would find the square root value \[14,400\] without using a calculator. The following steps show the operations of finding the square root of \[14,400\].
\[divisor\mathop{\left){\vphantom{1{dividend}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{dividend}}}}
\limits^{\displaystyle \,\,\, {quotient}}\]
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {120}}\]
First, we have to solve the first number \[1\] \[14400\]. As a next step, we have to find the square root \[1\]. So, we know that the square root of \[1\] is \[1\]. So, let’s write \[1\] as a divisor and quotient.
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
}}}
\limits^{\displaystyle \,\,\, 1}\]
When we subtract\[1\]and\[1\], we get zero. Next, we drop the next two numbers.
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {12}}\]
The first divisor is multiplied with\[2\]and take as the first digit of the second divisor. So, we
put\[2\]as a divisor and quotient. So, we get\[22\]as a nest divisor. After
subtracting\[44\]and\[44\]we get\[0\].
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {120}}\]
The last digit of the second divisor is multiplied by two and taken as the first two digits of the third divisor. Next, we drop two zero from the dividend. So, we know that \[0 \times 0\] is \[0\]. So, let’s take \[0\] a quotient as a part of the divisor.
So, the final answer is,
The square root \[14400\] is equal to \[120\].
Note: For finding the square root of a given value we use the operation of addition/ subtraction/ multiplication/ division. If the negative sign is involved inside the square root consider it as a positive number and follow the above-mentioned operation by adding \[i\]with a final answer for a negative sign of square root term. For each next step, we would multiply the last digit of the divisor by\[2\].
Complete step by step solution:
In this question, we would find the square root value \[14,400\] without using a calculator. The following steps show the operations of finding the square root of \[14,400\].
\[divisor\mathop{\left){\vphantom{1{dividend}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{dividend}}}}
\limits^{\displaystyle \,\,\, {quotient}}\]
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {120}}\]
First, we have to solve the first number \[1\] \[14400\]. As a next step, we have to find the square root \[1\]. So, we know that the square root of \[1\] is \[1\]. So, let’s write \[1\] as a divisor and quotient.
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
}}}
\limits^{\displaystyle \,\,\, 1}\]
When we subtract\[1\]and\[1\], we get zero. Next, we drop the next two numbers.
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {12}}\]
The first divisor is multiplied with\[2\]and take as the first digit of the second divisor. So, we
put\[2\]as a divisor and quotient. So, we get\[22\]as a nest divisor. After
subtracting\[44\]and\[44\]we get\[0\].
\[1\mathop{\left){\vphantom{1
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
14400 \\
1 \\
22\left){\vphantom{1
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
044 \\
44 \\
440\left){\vphantom{1
000 \\
00 \\
\Rightarrow 0 \\
}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{
000 \\
00 \\
\Rightarrow 0 \\
}} \\
}} \\
}}}
\limits^{\displaystyle \,\,\, {120}}\]
The last digit of the second divisor is multiplied by two and taken as the first two digits of the third divisor. Next, we drop two zero from the dividend. So, we know that \[0 \times 0\] is \[0\]. So, let’s take \[0\] a quotient as a part of the divisor.
So, the final answer is,
The square root \[14400\] is equal to \[120\].
Note: For finding the square root of a given value we use the operation of addition/ subtraction/ multiplication/ division. If the negative sign is involved inside the square root consider it as a positive number and follow the above-mentioned operation by adding \[i\]with a final answer for a negative sign of square root term. For each next step, we would multiply the last digit of the divisor by\[2\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

