
Find the square root of 1156
A. 34
B. 54
C. 61
D. 21
Answer
539.7k+ views
Hint: As a square root of a number $y$ is a number $x$ such that ${{x}^{2}}=y$. In this question try to write the given number as prime factors. So here write the given number as $N={{2}^{a}}{{3}^{b}}{{5}^{c}}...$ that is in power of prime numbers. square root is a number that, when multiplied by itself, gives the original number.
Complete step-by-step answer:
We have to find out the square root of 1156, so in order to find out square root of 1156 we have to find out the prime factor of 1156
So, we can factorise 1156 as
$\begin{align}
& 1156=2(578) \\
& 578=2(2)(289) \\
\end{align}$
Now we have to factorise 289, so we can write further
$289=(17)(17)$
Hence, we can write the factors of 1156 as
\[\begin{align}
& 1156=(2)(2)(17)(17) \\
& \Rightarrow 1156={{\left( 2 \right)}^{2}}{{\left( 17 \right)}^{2}}----(a) \\
\end{align}\]
Now suppose square root of $1156$ is N
So as per definition we can write from equation $(a)$
${{N}^{2}}=1156$
So, in prime factors we can write
\[\begin{align}
& {{N}^{2}}={{(2)}^{2}}{{(17)}^{2}} \\
& \Rightarrow N=(2)(17) \\
& \Rightarrow N=34 \\
\end{align}\]
So, the square root of 1156 is 34, Hence, option A is correct.
Note: We can also find the square root of a number by long division method .It should be noted here every positive number $x$ has two square roots:$\sqrt{x}$ , which is positive, and $-\sqrt{x}$ which is negative. In this question we have to select the positive value of square root. In real numbers the square root of a negative number is not defined.
Complete step-by-step answer:
We have to find out the square root of 1156, so in order to find out square root of 1156 we have to find out the prime factor of 1156
So, we can factorise 1156 as
$\begin{align}
& 1156=2(578) \\
& 578=2(2)(289) \\
\end{align}$
Now we have to factorise 289, so we can write further
$289=(17)(17)$
Hence, we can write the factors of 1156 as
\[\begin{align}
& 1156=(2)(2)(17)(17) \\
& \Rightarrow 1156={{\left( 2 \right)}^{2}}{{\left( 17 \right)}^{2}}----(a) \\
\end{align}\]
Now suppose square root of $1156$ is N
So as per definition we can write from equation $(a)$
${{N}^{2}}=1156$
So, in prime factors we can write
\[\begin{align}
& {{N}^{2}}={{(2)}^{2}}{{(17)}^{2}} \\
& \Rightarrow N=(2)(17) \\
& \Rightarrow N=34 \\
\end{align}\]
So, the square root of 1156 is 34, Hence, option A is correct.
Note: We can also find the square root of a number by long division method .It should be noted here every positive number $x$ has two square roots:$\sqrt{x}$ , which is positive, and $-\sqrt{x}$ which is negative. In this question we have to select the positive value of square root. In real numbers the square root of a negative number is not defined.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which is the largest saltwater lake in India A Chilika class 8 social science CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE
