
Find the solution of the integral $\int {\dfrac{{{x^3} - 1}}{{{x^3} + x}}} dx$.
A. $x - \log x + \log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c$
B. $x - \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c$
C. $x + \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) + {\tan ^{ - 1}}x + c$
D. $x + \log x - \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c$
Answer
493.5k+ views
Hint: Here, in the given question, we have to integrate \[\dfrac{{{x^3} - 1}}{{{x^3} + x}}\] with respect to $'x'$. Let us assume the value of $\int {\dfrac{{{x^3} - 1}}{{{x^3} + x}}} dx$ is equal to $I$. We will first simplify the integrand and by using partial fractions we will proceed, then we will integrate the functions individually using integration formulas.
Complete step by step answer:
Let $I = \int {\dfrac{{{x^3} - 1}}{{{x^3} + x}}} dx$
Add and subtract $x$ in the numerator.
$ \Rightarrow I = \int {\dfrac{{{x^3} + x - x - 1}}{{{x^3} + x}}} dx$
We can write it as,
$ \Rightarrow I = \int {1 + \dfrac{{\left( { - x - 1} \right)}}{{{x^3} + x}}} dx$
On taking negative sign as common, we get
$ \Rightarrow I = \int {1 - \dfrac{{\left( {x + 1} \right)}}{{{x^3} + x}}} dx$
On splitting the integral, we get
\[ \Rightarrow I = \int {1dx - \int {\dfrac{{x + 1}}{{{x^3} + x}}} dx} \]
\[ \Rightarrow I = \int {1dx - \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}} dx} .....\left( i \right)\]
Let us first solve \[\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}\].
To solve this, we need to break the function into partial fractions. The way to do this is to find constants $A$, $B$ and $C$ such that
$ \Rightarrow \dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{A}{x} + \dfrac{{Bx + C}}{{{x^2} + 1}}$
Take LCM on the right-hand side
$ \Rightarrow \dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{{A\left( {{x^2} + 1} \right) + \left( {Bx + C} \right)x}}{{x\left( {{x^2} + 1} \right)}}$
On canceling out common terms, we get
$ \Rightarrow x + 1 = A\left( {{x^2} + 1} \right) + \left( {Bx + C} \right)x$
This yields \[A{x^2} + A + B{x^2} + Cx = x + 1\]; Then $A + B = 0$, $C = 1$ and $A = 1$, which gives $B = - 1$.
Therefore, our integral $\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{A}{x} + \dfrac{{Bx + C}}{{{x^2} + 1}}$, becomes:
$ \Rightarrow \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}dx} = \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)} dx$
From $\left( i \right)$, we get
\[I = \int {1dx - \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}} dx} .....\left( i \right)\]
On substituting value of $\int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}dx} = \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)} dx$, we get
\[ \Rightarrow I = \int {1dx - \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)dx} } \]
\[ \Rightarrow I = \int {1dx - \int {\left( {\dfrac{1}{x} - \dfrac{x}{{{x^2} + 1}} + \dfrac{1}{{{x^2} + 1}}} \right)dx} } \]
On opening the bracket and changing the signs (as there is negative sign outside the bracket), we get
\[ \Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} dx + \int {\dfrac{x}{{{x^2} + 1}}dx} - \int {\dfrac{1}{{{x^2} + 1}}dx} } \]
Multiply and divide \[\int {\dfrac{x}{{{x^2} + 1}}dx} \], by $2$.
$ \Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} } dx + \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}} dx - \int {\dfrac{1}{{{x^2} + 1}}} dx....\left( {ii} \right)$
Now, we will integrate all the functions one-by-one.
As we know, the integral of $1$ is $x$ and the integral of $\dfrac{1}{x}$ is $\log x$.
Now let us find the integral of $\dfrac{{2x}}{{{x^2} + 1}}$.
Let ${x^2} + 1 = u$.
$ \Rightarrow 2xdx = du$, from here we get
$ \Rightarrow \int {\dfrac{{2x}}{{{x^2} + 1}}dx = \int {\dfrac{{du}}{u}} } $
$ \Rightarrow \int {\dfrac{{du}}{u}} = \log u + {c_1}$
On substituting value of $u$, we get
$ \Rightarrow \int {\dfrac{{2x}}{{{x^2} + 1}}} = \log \left( {{x^2} + 1} \right) + {c_1}$
Now, let us find the integral of $\dfrac{1}{{{x^2} + 1}}$. As we know $\int {\dfrac{1}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C$
$\int {\dfrac{1}{{{x^2} + 1}}} dx = {\tan ^{ - 1}}x + {c_2}$
On substituting all the values of integrals in $\left( {ii} \right)$, we get
$ \Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} } dx + \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}} dx - \int {\dfrac{1}{{{x^2} + 1}}} dx....\left( {ii} \right)$
\[ \Rightarrow I = x - \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + {c_1} + {c_2}\]
We can write ${c_1}$ and ${c_2}$ as common constant $c$.
\[ \therefore I = x - \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c\]
Where $c$ is the arbitrary constant called constant of integration.
Therefore, the correct option is B.
Note:We have indefinite integral that is why we added integration constant. If we have a definite integral we do not add integration constant. We know integration formulas which yield inverse trigonometric functions:
$\Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C$
\[\Rightarrow \int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} = {\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C\]
$\Rightarrow \int {\dfrac{1}{{x\sqrt {{x^2} - {a^2}} }}} = \dfrac{1}{a}{\sec ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C$
Complete step by step answer:
Let $I = \int {\dfrac{{{x^3} - 1}}{{{x^3} + x}}} dx$
Add and subtract $x$ in the numerator.
$ \Rightarrow I = \int {\dfrac{{{x^3} + x - x - 1}}{{{x^3} + x}}} dx$
We can write it as,
$ \Rightarrow I = \int {1 + \dfrac{{\left( { - x - 1} \right)}}{{{x^3} + x}}} dx$
On taking negative sign as common, we get
$ \Rightarrow I = \int {1 - \dfrac{{\left( {x + 1} \right)}}{{{x^3} + x}}} dx$
On splitting the integral, we get
\[ \Rightarrow I = \int {1dx - \int {\dfrac{{x + 1}}{{{x^3} + x}}} dx} \]
\[ \Rightarrow I = \int {1dx - \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}} dx} .....\left( i \right)\]
Let us first solve \[\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}\].
To solve this, we need to break the function into partial fractions. The way to do this is to find constants $A$, $B$ and $C$ such that
$ \Rightarrow \dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{A}{x} + \dfrac{{Bx + C}}{{{x^2} + 1}}$
Take LCM on the right-hand side
$ \Rightarrow \dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{{A\left( {{x^2} + 1} \right) + \left( {Bx + C} \right)x}}{{x\left( {{x^2} + 1} \right)}}$
On canceling out common terms, we get
$ \Rightarrow x + 1 = A\left( {{x^2} + 1} \right) + \left( {Bx + C} \right)x$
This yields \[A{x^2} + A + B{x^2} + Cx = x + 1\]; Then $A + B = 0$, $C = 1$ and $A = 1$, which gives $B = - 1$.
Therefore, our integral $\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{A}{x} + \dfrac{{Bx + C}}{{{x^2} + 1}}$, becomes:
$ \Rightarrow \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}dx} = \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)} dx$
From $\left( i \right)$, we get
\[I = \int {1dx - \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}} dx} .....\left( i \right)\]
On substituting value of $\int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}dx} = \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)} dx$, we get
\[ \Rightarrow I = \int {1dx - \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)dx} } \]
\[ \Rightarrow I = \int {1dx - \int {\left( {\dfrac{1}{x} - \dfrac{x}{{{x^2} + 1}} + \dfrac{1}{{{x^2} + 1}}} \right)dx} } \]
On opening the bracket and changing the signs (as there is negative sign outside the bracket), we get
\[ \Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} dx + \int {\dfrac{x}{{{x^2} + 1}}dx} - \int {\dfrac{1}{{{x^2} + 1}}dx} } \]
Multiply and divide \[\int {\dfrac{x}{{{x^2} + 1}}dx} \], by $2$.
$ \Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} } dx + \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}} dx - \int {\dfrac{1}{{{x^2} + 1}}} dx....\left( {ii} \right)$
Now, we will integrate all the functions one-by-one.
As we know, the integral of $1$ is $x$ and the integral of $\dfrac{1}{x}$ is $\log x$.
Now let us find the integral of $\dfrac{{2x}}{{{x^2} + 1}}$.
Let ${x^2} + 1 = u$.
$ \Rightarrow 2xdx = du$, from here we get
$ \Rightarrow \int {\dfrac{{2x}}{{{x^2} + 1}}dx = \int {\dfrac{{du}}{u}} } $
$ \Rightarrow \int {\dfrac{{du}}{u}} = \log u + {c_1}$
On substituting value of $u$, we get
$ \Rightarrow \int {\dfrac{{2x}}{{{x^2} + 1}}} = \log \left( {{x^2} + 1} \right) + {c_1}$
Now, let us find the integral of $\dfrac{1}{{{x^2} + 1}}$. As we know $\int {\dfrac{1}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C$
$\int {\dfrac{1}{{{x^2} + 1}}} dx = {\tan ^{ - 1}}x + {c_2}$
On substituting all the values of integrals in $\left( {ii} \right)$, we get
$ \Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} } dx + \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}} dx - \int {\dfrac{1}{{{x^2} + 1}}} dx....\left( {ii} \right)$
\[ \Rightarrow I = x - \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + {c_1} + {c_2}\]
We can write ${c_1}$ and ${c_2}$ as common constant $c$.
\[ \therefore I = x - \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c\]
Where $c$ is the arbitrary constant called constant of integration.
Therefore, the correct option is B.
Note:We have indefinite integral that is why we added integration constant. If we have a definite integral we do not add integration constant. We know integration formulas which yield inverse trigonometric functions:
$\Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C$
\[\Rightarrow \int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} = {\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C\]
$\Rightarrow \int {\dfrac{1}{{x\sqrt {{x^2} - {a^2}} }}} = \dfrac{1}{a}{\sec ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C$
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

