
Find the solution of $\left( x\sqrt{xy}\left( x+y \right)-y \right)dx+\left( y\sqrt{xy}\left( x+y \right)-x \right)dy=0$.
A. ${{x}^{2}}+{{y}^{2}}=2{{\tan }^{-1}}\sqrt{\dfrac{y}{x}}+c$
B. ${{x}^{2}}+{{y}^{2}}=4{{\tan }^{-1}}\sqrt{\dfrac{y}{x}}+c$
C. ${{x}^{2}}+{{y}^{2}}={{\tan }^{-1}}\sqrt{\dfrac{y}{x}}+c$
D. none of these
Answer
540k+ views
Hint: We have to find the differential forms of many consecutive composite functions. We keep rearranging the equation in such a way that the composite functions keep forming the differential forms. At the end we integrate the whole differential to find the solution.
Complete step by step answer:
We take the given differential form and get $\left( x\sqrt{xy}\left( x+y \right)-y \right)dx+\left( y\sqrt{xy}\left( x+y \right)-x \right)dy=0$.
We try to form the general differential forms where
\[\begin{align}
& \left( x\sqrt{xy}\left( x+y \right)-y \right)dx+\left( y\sqrt{xy}\left( x+y \right)-x \right)dy=0 \\
& \Rightarrow \sqrt{xy}\left( x+y \right)\left[ xdx+ydy \right]=xdy+ydx \\
& \Rightarrow 2\sqrt{xy}\left( x+y \right)\left[ xdx+ydy \right]=2\left( xdy+ydx \right) \\
\end{align}\]
We try to find the differential form of ${{x}^{2}}+{{y}^{2}}$.
So, $d\left( {{x}^{2}}+{{y}^{2}} \right)=d\left( {{x}^{2}} \right)+d\left( {{y}^{2}} \right)=2xdx+2ydy$.
We replace the values and get
\[\begin{align}
& 2\sqrt{xy}\left( x+y \right)\left[ xdx+ydy \right]=2\left( xdy+ydx \right) \\
& \Rightarrow 2xdx+2ydy=\,\dfrac{2\left( xdy+ydx \right)}{\sqrt{xy}\left( x+y \right)} \\
& \Rightarrow d\left( {{x}^{2}}+{{y}^{2}} \right)=\,\dfrac{2\left( xdy+ydx \right)}{\sqrt{xy}\left( x+y \right)} \\
\end{align}\]
We now try to find the differential form of $\dfrac{y}{x}$.
So, $d\left( \dfrac{y}{x} \right)=\dfrac{xdy+ydx}{{{x}^{2}}}$.
We rearrange the equation \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,\dfrac{2\left( xdy+ydx \right)}{\sqrt{xy}\left( x+y \right)}\] and get
\[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,2\dfrac{\left( xdy+ydx \right)}{{{x}^{2}}}\times \dfrac{x}{\left( x+y \right)}\times \dfrac{x}{\sqrt{xy}}\]
Replacing the value, we get \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,2d\left( \dfrac{y}{x} \right)\times \dfrac{x}{\left( x+y \right)}\times \dfrac{x}{\sqrt{xy}}\].
We now try to find the differential form of $\sqrt{\dfrac{y}{x}}$.
So, $d\left( \sqrt{\dfrac{y}{x}} \right)=\dfrac{1}{2\sqrt{\dfrac{y}{x}}}\times d\left( \dfrac{y}{x} \right)=\dfrac{x}{2\sqrt{xy}}\times d\left( \dfrac{y}{x} \right)$.
We rearrange the equation \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,2d\left( \dfrac{y}{x} \right)\times \dfrac{x}{\left( x+y \right)}\times \dfrac{x}{\sqrt{xy}}\] and get
\[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,4\dfrac{x}{\left( x+y \right)}\times \dfrac{x}{2\sqrt{xy}}d\left( \dfrac{y}{x} \right)\]
Replacing the value, we get \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,4\dfrac{x}{\left( x+y \right)}\times d\left( \sqrt{\dfrac{y}{x}} \right)\]
We now try to find the differential form of ${{\tan }^{-1}}\sqrt{\dfrac{y}{x}}$.
So, $d\left( {{\tan }^{-1}}\sqrt{\dfrac{y}{x}} \right)=\dfrac{1}{1+{{\left( \sqrt{\dfrac{y}{x}} \right)}^{2}}}d\left( \sqrt{\dfrac{y}{x}} \right)=\dfrac{1}{1+\dfrac{y}{x}}d\left( \sqrt{\dfrac{y}{x}} \right)=\dfrac{x}{x+y}d\left( \sqrt{\dfrac{y}{x}} \right)$.
Replacing the value in \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,4\dfrac{x}{\left( x+y \right)}\times d\left( \sqrt{\dfrac{y}{x}} \right)\], we get \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,4\dfrac{x}{\left( x+y \right)}\times d\left( \sqrt{\dfrac{y}{x}} \right)=4d\left( {{\tan }^{-1}}\sqrt{\dfrac{y}{x}} \right)\]
The total differential form is \[d\left( {{x}^{2}}+{{y}^{2}} \right)=4d\left( {{\tan }^{-1}}\sqrt{\dfrac{y}{x}} \right)\].
We take indefinite integral both sides to get
\[\begin{align}
& \int{d\left( {{x}^{2}}+{{y}^{2}} \right)}=4\int{d\left( {{\tan }^{-1}}\sqrt{\dfrac{y}{x}} \right)} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}=4{{\tan }^{-1}}\sqrt{\dfrac{y}{x}}+c \\
\end{align}\]
The correct option is B.
Note: We can also assume the variable where $\dfrac{y}{x}={{v}^{2}}$, but in that case we have to take the new variable. The solution is the same but the process becomes more complicated. That's why it is better to use differential form than using different variables.
Complete step by step answer:
We take the given differential form and get $\left( x\sqrt{xy}\left( x+y \right)-y \right)dx+\left( y\sqrt{xy}\left( x+y \right)-x \right)dy=0$.
We try to form the general differential forms where
\[\begin{align}
& \left( x\sqrt{xy}\left( x+y \right)-y \right)dx+\left( y\sqrt{xy}\left( x+y \right)-x \right)dy=0 \\
& \Rightarrow \sqrt{xy}\left( x+y \right)\left[ xdx+ydy \right]=xdy+ydx \\
& \Rightarrow 2\sqrt{xy}\left( x+y \right)\left[ xdx+ydy \right]=2\left( xdy+ydx \right) \\
\end{align}\]
We try to find the differential form of ${{x}^{2}}+{{y}^{2}}$.
So, $d\left( {{x}^{2}}+{{y}^{2}} \right)=d\left( {{x}^{2}} \right)+d\left( {{y}^{2}} \right)=2xdx+2ydy$.
We replace the values and get
\[\begin{align}
& 2\sqrt{xy}\left( x+y \right)\left[ xdx+ydy \right]=2\left( xdy+ydx \right) \\
& \Rightarrow 2xdx+2ydy=\,\dfrac{2\left( xdy+ydx \right)}{\sqrt{xy}\left( x+y \right)} \\
& \Rightarrow d\left( {{x}^{2}}+{{y}^{2}} \right)=\,\dfrac{2\left( xdy+ydx \right)}{\sqrt{xy}\left( x+y \right)} \\
\end{align}\]
We now try to find the differential form of $\dfrac{y}{x}$.
So, $d\left( \dfrac{y}{x} \right)=\dfrac{xdy+ydx}{{{x}^{2}}}$.
We rearrange the equation \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,\dfrac{2\left( xdy+ydx \right)}{\sqrt{xy}\left( x+y \right)}\] and get
\[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,2\dfrac{\left( xdy+ydx \right)}{{{x}^{2}}}\times \dfrac{x}{\left( x+y \right)}\times \dfrac{x}{\sqrt{xy}}\]
Replacing the value, we get \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,2d\left( \dfrac{y}{x} \right)\times \dfrac{x}{\left( x+y \right)}\times \dfrac{x}{\sqrt{xy}}\].
We now try to find the differential form of $\sqrt{\dfrac{y}{x}}$.
So, $d\left( \sqrt{\dfrac{y}{x}} \right)=\dfrac{1}{2\sqrt{\dfrac{y}{x}}}\times d\left( \dfrac{y}{x} \right)=\dfrac{x}{2\sqrt{xy}}\times d\left( \dfrac{y}{x} \right)$.
We rearrange the equation \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,2d\left( \dfrac{y}{x} \right)\times \dfrac{x}{\left( x+y \right)}\times \dfrac{x}{\sqrt{xy}}\] and get
\[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,4\dfrac{x}{\left( x+y \right)}\times \dfrac{x}{2\sqrt{xy}}d\left( \dfrac{y}{x} \right)\]
Replacing the value, we get \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,4\dfrac{x}{\left( x+y \right)}\times d\left( \sqrt{\dfrac{y}{x}} \right)\]
We now try to find the differential form of ${{\tan }^{-1}}\sqrt{\dfrac{y}{x}}$.
So, $d\left( {{\tan }^{-1}}\sqrt{\dfrac{y}{x}} \right)=\dfrac{1}{1+{{\left( \sqrt{\dfrac{y}{x}} \right)}^{2}}}d\left( \sqrt{\dfrac{y}{x}} \right)=\dfrac{1}{1+\dfrac{y}{x}}d\left( \sqrt{\dfrac{y}{x}} \right)=\dfrac{x}{x+y}d\left( \sqrt{\dfrac{y}{x}} \right)$.
Replacing the value in \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,4\dfrac{x}{\left( x+y \right)}\times d\left( \sqrt{\dfrac{y}{x}} \right)\], we get \[d\left( {{x}^{2}}+{{y}^{2}} \right)=\,4\dfrac{x}{\left( x+y \right)}\times d\left( \sqrt{\dfrac{y}{x}} \right)=4d\left( {{\tan }^{-1}}\sqrt{\dfrac{y}{x}} \right)\]
The total differential form is \[d\left( {{x}^{2}}+{{y}^{2}} \right)=4d\left( {{\tan }^{-1}}\sqrt{\dfrac{y}{x}} \right)\].
We take indefinite integral both sides to get
\[\begin{align}
& \int{d\left( {{x}^{2}}+{{y}^{2}} \right)}=4\int{d\left( {{\tan }^{-1}}\sqrt{\dfrac{y}{x}} \right)} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}=4{{\tan }^{-1}}\sqrt{\dfrac{y}{x}}+c \\
\end{align}\]
The correct option is B.
Note: We can also assume the variable where $\dfrac{y}{x}={{v}^{2}}$, but in that case we have to take the new variable. The solution is the same but the process becomes more complicated. That's why it is better to use differential form than using different variables.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

