
Find the solution of $\dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}}$.
A. ${{\left( y-x \right)}^{2}}\left( {{x}^{2}}+1+c{{x}^{2}} \right)=1$
B. ${{\left( y-x \right)}^{2}}\left( {{x}^{2}}+1+c{{e}^{{{x}^{2}}}} \right)=1$
C. ${{\left( y-x \right)}^{2}}\left( {{x}^{2}}-1+c{{x}^{2}} \right)=1$
D. ${{\left( y-x \right)}^{2}}\left( -{{x}^{2}}-1+c{{e}^{{{x}^{2}}}} \right)=1$
Answer
573k+ views
Hint: We first try to form the differential of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$. The main equation will be divided with ${{\left( y-x \right)}^{3}}$. On the left side we will get the differential form of chain rule of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$. Then we need to find the integral of right-side function of \[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx\]. At the end we find the equation similar to the options given.
Complete step-by-step answer:
We have been given the differential equation of $\dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}}$.
We try to form a differential form of $\left( y-x \right)$.
$\begin{align}
& \dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}} \\
& \Rightarrow \dfrac{dy}{dx}-1=-x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right] \\
& \Rightarrow \dfrac{dy-dx}{dx}=-x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right] \\
& \Rightarrow \dfrac{d\left( y-x \right)}{dx}+x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right]=0 \\
\end{align}$
The differentials and also the equation in the form of $\left( y-x \right)$.
We divide the whole equation with ${{\left( y-x \right)}^{3}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{dx}+x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right]=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}dx}+\dfrac{x\left( y-x \right)}{\left( y-x \right)}\left[ \dfrac{1+{{x}^{2}}{{\left( y-x \right)}^{2}}}{{{\left( y-x \right)}^{2}}} \right]=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+x\left[ {{x}^{2}}+\dfrac{1}{{{\left( y-x \right)}^{2}}} \right]dx=0 \\
\end{align}\]
Now we break the differential equation in the differential form of the multiplication of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+x\left[ {{x}^{2}}+\dfrac{1}{{{\left( y-x \right)}^{2}}} \right]dx=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+\dfrac{xdx}{{{\left( y-x \right)}^{2}}}=-{{x}^{3}}dx \\
\end{align}\]
We multiply the term $-2{{e}^{-{{x}^{2}}}}$ both sides and also find the differentiation of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+\dfrac{xdx}{{{\left( y-x \right)}^{2}}}=-{{x}^{3}}dx \\
& \Rightarrow {{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}}=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx.........(i) \\
\end{align}\]
Now the left-hand side is the differential form of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$. We find the form by going differentiation side.
We are finding the value of $d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]$.
We have chain rule to apply $d\left( xy \right)=ydx+xdy$.
$\begin{align}
& d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right] \\
& ={{e}^{-{{x}^{2}}}}\left[ d{{\left( y-x \right)}^{-2}} \right]+{{\left( y-x \right)}^{-2}}d\left( {{e}^{-{{x}^{2}}}} \right) \\
& ={{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}} \\
\end{align}$
Now we can change the equation form of (i) in the differential form
\[\begin{align}
& {{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}}=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx \\
& \Rightarrow d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx \\
\end{align}\]
We also have to form the differential of the right-hand side \[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx\].
\[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx=\left( -2x \right)\left( -{{x}^{2}} \right){{e}^{-{{x}^{2}}}}dx\]. Let \[-{{x}^{2}}=z\Rightarrow d\left( -{{x}^{2}} \right)=dz\]. Taking differentials, we get
\[\begin{align}
& d\left( -{{x}^{2}} \right)=dz \\
& \Rightarrow \left( -2x \right)dx=dz \\
\end{align}\]
Replacing the values, we get \[\left( -2x \right)\left( -{{x}^{2}} \right){{e}^{-{{x}^{2}}}}dx=z{{e}^{z}}dz\].
So, the equation becomes \[d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]=z{{e}^{z}}dz\].
Taking integration both sides we get
\[\begin{align}
& \int{d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]}=\int{z{{e}^{z}}dz} \\
& \Rightarrow {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=z{{e}^{z}}-{{e}^{z}}+c \\
\end{align}\]
Here, c is the integral constant. We also need to replace the value of z.
\[\begin{align}
& {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=z{{e}^{z}}-{{e}^{z}}+c \\
& \Rightarrow {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=\left( -{{x}^{2}}-1 \right){{e}^{-{{x}^{2}}}}+c \\
& \Rightarrow {{\left( y-x \right)}^{-2}}=\left( -{{x}^{2}}-1 \right)+c{{e}^{{{x}^{2}}}} \\
& \Rightarrow \dfrac{1}{{{\left( y-x \right)}^{2}}}=\left( c{{e}^{{{x}^{2}}}}-{{x}^{2}}-1 \right) \\
& \Rightarrow {{\left( y-x \right)}^{2}}\left( -{{x}^{2}}-1+c{{e}^{{{x}^{2}}}} \right)=1 \\
\end{align}\]
So, the correct answer is “Option D”.
Note: If we don’t take a differential then we have to take too many variables to compensate for the form and that will become very tough to solve after a time. That’s why the left-hand side has to be solved with the help of differentials.
Complete step-by-step answer:
We have been given the differential equation of $\dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}}$.
We try to form a differential form of $\left( y-x \right)$.
$\begin{align}
& \dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}} \\
& \Rightarrow \dfrac{dy}{dx}-1=-x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right] \\
& \Rightarrow \dfrac{dy-dx}{dx}=-x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right] \\
& \Rightarrow \dfrac{d\left( y-x \right)}{dx}+x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right]=0 \\
\end{align}$
The differentials and also the equation in the form of $\left( y-x \right)$.
We divide the whole equation with ${{\left( y-x \right)}^{3}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{dx}+x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right]=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}dx}+\dfrac{x\left( y-x \right)}{\left( y-x \right)}\left[ \dfrac{1+{{x}^{2}}{{\left( y-x \right)}^{2}}}{{{\left( y-x \right)}^{2}}} \right]=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+x\left[ {{x}^{2}}+\dfrac{1}{{{\left( y-x \right)}^{2}}} \right]dx=0 \\
\end{align}\]
Now we break the differential equation in the differential form of the multiplication of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+x\left[ {{x}^{2}}+\dfrac{1}{{{\left( y-x \right)}^{2}}} \right]dx=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+\dfrac{xdx}{{{\left( y-x \right)}^{2}}}=-{{x}^{3}}dx \\
\end{align}\]
We multiply the term $-2{{e}^{-{{x}^{2}}}}$ both sides and also find the differentiation of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+\dfrac{xdx}{{{\left( y-x \right)}^{2}}}=-{{x}^{3}}dx \\
& \Rightarrow {{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}}=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx.........(i) \\
\end{align}\]
Now the left-hand side is the differential form of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$. We find the form by going differentiation side.
We are finding the value of $d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]$.
We have chain rule to apply $d\left( xy \right)=ydx+xdy$.
$\begin{align}
& d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right] \\
& ={{e}^{-{{x}^{2}}}}\left[ d{{\left( y-x \right)}^{-2}} \right]+{{\left( y-x \right)}^{-2}}d\left( {{e}^{-{{x}^{2}}}} \right) \\
& ={{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}} \\
\end{align}$
Now we can change the equation form of (i) in the differential form
\[\begin{align}
& {{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}}=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx \\
& \Rightarrow d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx \\
\end{align}\]
We also have to form the differential of the right-hand side \[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx\].
\[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx=\left( -2x \right)\left( -{{x}^{2}} \right){{e}^{-{{x}^{2}}}}dx\]. Let \[-{{x}^{2}}=z\Rightarrow d\left( -{{x}^{2}} \right)=dz\]. Taking differentials, we get
\[\begin{align}
& d\left( -{{x}^{2}} \right)=dz \\
& \Rightarrow \left( -2x \right)dx=dz \\
\end{align}\]
Replacing the values, we get \[\left( -2x \right)\left( -{{x}^{2}} \right){{e}^{-{{x}^{2}}}}dx=z{{e}^{z}}dz\].
So, the equation becomes \[d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]=z{{e}^{z}}dz\].
Taking integration both sides we get
\[\begin{align}
& \int{d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]}=\int{z{{e}^{z}}dz} \\
& \Rightarrow {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=z{{e}^{z}}-{{e}^{z}}+c \\
\end{align}\]
Here, c is the integral constant. We also need to replace the value of z.
\[\begin{align}
& {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=z{{e}^{z}}-{{e}^{z}}+c \\
& \Rightarrow {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=\left( -{{x}^{2}}-1 \right){{e}^{-{{x}^{2}}}}+c \\
& \Rightarrow {{\left( y-x \right)}^{-2}}=\left( -{{x}^{2}}-1 \right)+c{{e}^{{{x}^{2}}}} \\
& \Rightarrow \dfrac{1}{{{\left( y-x \right)}^{2}}}=\left( c{{e}^{{{x}^{2}}}}-{{x}^{2}}-1 \right) \\
& \Rightarrow {{\left( y-x \right)}^{2}}\left( -{{x}^{2}}-1+c{{e}^{{{x}^{2}}}} \right)=1 \\
\end{align}\]
So, the correct answer is “Option D”.
Note: If we don’t take a differential then we have to take too many variables to compensate for the form and that will become very tough to solve after a time. That’s why the left-hand side has to be solved with the help of differentials.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

