
Find the solution of $\dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}}$.
A. ${{\left( y-x \right)}^{2}}\left( {{x}^{2}}+1+c{{x}^{2}} \right)=1$
B. ${{\left( y-x \right)}^{2}}\left( {{x}^{2}}+1+c{{e}^{{{x}^{2}}}} \right)=1$
C. ${{\left( y-x \right)}^{2}}\left( {{x}^{2}}-1+c{{x}^{2}} \right)=1$
D. ${{\left( y-x \right)}^{2}}\left( -{{x}^{2}}-1+c{{e}^{{{x}^{2}}}} \right)=1$
Answer
486k+ views
Hint: We first try to form the differential of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$. The main equation will be divided with ${{\left( y-x \right)}^{3}}$. On the left side we will get the differential form of chain rule of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$. Then we need to find the integral of right-side function of \[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx\]. At the end we find the equation similar to the options given.
Complete step-by-step answer:
We have been given the differential equation of $\dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}}$.
We try to form a differential form of $\left( y-x \right)$.
$\begin{align}
& \dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}} \\
& \Rightarrow \dfrac{dy}{dx}-1=-x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right] \\
& \Rightarrow \dfrac{dy-dx}{dx}=-x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right] \\
& \Rightarrow \dfrac{d\left( y-x \right)}{dx}+x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right]=0 \\
\end{align}$
The differentials and also the equation in the form of $\left( y-x \right)$.
We divide the whole equation with ${{\left( y-x \right)}^{3}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{dx}+x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right]=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}dx}+\dfrac{x\left( y-x \right)}{\left( y-x \right)}\left[ \dfrac{1+{{x}^{2}}{{\left( y-x \right)}^{2}}}{{{\left( y-x \right)}^{2}}} \right]=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+x\left[ {{x}^{2}}+\dfrac{1}{{{\left( y-x \right)}^{2}}} \right]dx=0 \\
\end{align}\]
Now we break the differential equation in the differential form of the multiplication of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+x\left[ {{x}^{2}}+\dfrac{1}{{{\left( y-x \right)}^{2}}} \right]dx=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+\dfrac{xdx}{{{\left( y-x \right)}^{2}}}=-{{x}^{3}}dx \\
\end{align}\]
We multiply the term $-2{{e}^{-{{x}^{2}}}}$ both sides and also find the differentiation of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+\dfrac{xdx}{{{\left( y-x \right)}^{2}}}=-{{x}^{3}}dx \\
& \Rightarrow {{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}}=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx.........(i) \\
\end{align}\]
Now the left-hand side is the differential form of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$. We find the form by going differentiation side.
We are finding the value of $d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]$.
We have chain rule to apply $d\left( xy \right)=ydx+xdy$.
$\begin{align}
& d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right] \\
& ={{e}^{-{{x}^{2}}}}\left[ d{{\left( y-x \right)}^{-2}} \right]+{{\left( y-x \right)}^{-2}}d\left( {{e}^{-{{x}^{2}}}} \right) \\
& ={{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}} \\
\end{align}$
Now we can change the equation form of (i) in the differential form
\[\begin{align}
& {{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}}=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx \\
& \Rightarrow d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx \\
\end{align}\]
We also have to form the differential of the right-hand side \[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx\].
\[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx=\left( -2x \right)\left( -{{x}^{2}} \right){{e}^{-{{x}^{2}}}}dx\]. Let \[-{{x}^{2}}=z\Rightarrow d\left( -{{x}^{2}} \right)=dz\]. Taking differentials, we get
\[\begin{align}
& d\left( -{{x}^{2}} \right)=dz \\
& \Rightarrow \left( -2x \right)dx=dz \\
\end{align}\]
Replacing the values, we get \[\left( -2x \right)\left( -{{x}^{2}} \right){{e}^{-{{x}^{2}}}}dx=z{{e}^{z}}dz\].
So, the equation becomes \[d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]=z{{e}^{z}}dz\].
Taking integration both sides we get
\[\begin{align}
& \int{d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]}=\int{z{{e}^{z}}dz} \\
& \Rightarrow {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=z{{e}^{z}}-{{e}^{z}}+c \\
\end{align}\]
Here, c is the integral constant. We also need to replace the value of z.
\[\begin{align}
& {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=z{{e}^{z}}-{{e}^{z}}+c \\
& \Rightarrow {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=\left( -{{x}^{2}}-1 \right){{e}^{-{{x}^{2}}}}+c \\
& \Rightarrow {{\left( y-x \right)}^{-2}}=\left( -{{x}^{2}}-1 \right)+c{{e}^{{{x}^{2}}}} \\
& \Rightarrow \dfrac{1}{{{\left( y-x \right)}^{2}}}=\left( c{{e}^{{{x}^{2}}}}-{{x}^{2}}-1 \right) \\
& \Rightarrow {{\left( y-x \right)}^{2}}\left( -{{x}^{2}}-1+c{{e}^{{{x}^{2}}}} \right)=1 \\
\end{align}\]
So, the correct answer is “Option D”.
Note: If we don’t take a differential then we have to take too many variables to compensate for the form and that will become very tough to solve after a time. That’s why the left-hand side has to be solved with the help of differentials.
Complete step-by-step answer:
We have been given the differential equation of $\dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}}$.
We try to form a differential form of $\left( y-x \right)$.
$\begin{align}
& \dfrac{dy}{dx}=1-x\left( y-x \right)-{{x}^{3}}{{\left( y-x \right)}^{3}} \\
& \Rightarrow \dfrac{dy}{dx}-1=-x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right] \\
& \Rightarrow \dfrac{dy-dx}{dx}=-x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right] \\
& \Rightarrow \dfrac{d\left( y-x \right)}{dx}+x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right]=0 \\
\end{align}$
The differentials and also the equation in the form of $\left( y-x \right)$.
We divide the whole equation with ${{\left( y-x \right)}^{3}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{dx}+x\left( y-x \right)\left[ 1+{{x}^{2}}{{\left( y-x \right)}^{2}} \right]=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}dx}+\dfrac{x\left( y-x \right)}{\left( y-x \right)}\left[ \dfrac{1+{{x}^{2}}{{\left( y-x \right)}^{2}}}{{{\left( y-x \right)}^{2}}} \right]=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+x\left[ {{x}^{2}}+\dfrac{1}{{{\left( y-x \right)}^{2}}} \right]dx=0 \\
\end{align}\]
Now we break the differential equation in the differential form of the multiplication of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+x\left[ {{x}^{2}}+\dfrac{1}{{{\left( y-x \right)}^{2}}} \right]dx=0 \\
& \Rightarrow \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+\dfrac{xdx}{{{\left( y-x \right)}^{2}}}=-{{x}^{3}}dx \\
\end{align}\]
We multiply the term $-2{{e}^{-{{x}^{2}}}}$ both sides and also find the differentiation of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$.
\[\begin{align}
& \dfrac{d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}+\dfrac{xdx}{{{\left( y-x \right)}^{2}}}=-{{x}^{3}}dx \\
& \Rightarrow {{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}}=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx.........(i) \\
\end{align}\]
Now the left-hand side is the differential form of ${{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}$. We find the form by going differentiation side.
We are finding the value of $d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]$.
We have chain rule to apply $d\left( xy \right)=ydx+xdy$.
$\begin{align}
& d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right] \\
& ={{e}^{-{{x}^{2}}}}\left[ d{{\left( y-x \right)}^{-2}} \right]+{{\left( y-x \right)}^{-2}}d\left( {{e}^{-{{x}^{2}}}} \right) \\
& ={{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}} \\
\end{align}$
Now we can change the equation form of (i) in the differential form
\[\begin{align}
& {{e}^{-{{x}^{2}}}}\dfrac{-2d\left( y-x \right)}{{{\left( y-x \right)}^{3}}}-\dfrac{2x{{e}^{-{{x}^{2}}}}dx}{{{\left( y-x \right)}^{2}}}=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx \\
& \Rightarrow d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]=2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx \\
\end{align}\]
We also have to form the differential of the right-hand side \[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx\].
\[2{{x}^{3}}{{e}^{-{{x}^{2}}}}dx=\left( -2x \right)\left( -{{x}^{2}} \right){{e}^{-{{x}^{2}}}}dx\]. Let \[-{{x}^{2}}=z\Rightarrow d\left( -{{x}^{2}} \right)=dz\]. Taking differentials, we get
\[\begin{align}
& d\left( -{{x}^{2}} \right)=dz \\
& \Rightarrow \left( -2x \right)dx=dz \\
\end{align}\]
Replacing the values, we get \[\left( -2x \right)\left( -{{x}^{2}} \right){{e}^{-{{x}^{2}}}}dx=z{{e}^{z}}dz\].
So, the equation becomes \[d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]=z{{e}^{z}}dz\].
Taking integration both sides we get
\[\begin{align}
& \int{d\left[ {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}} \right]}=\int{z{{e}^{z}}dz} \\
& \Rightarrow {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=z{{e}^{z}}-{{e}^{z}}+c \\
\end{align}\]
Here, c is the integral constant. We also need to replace the value of z.
\[\begin{align}
& {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=z{{e}^{z}}-{{e}^{z}}+c \\
& \Rightarrow {{e}^{-{{x}^{2}}}}{{\left( y-x \right)}^{-2}}=\left( -{{x}^{2}}-1 \right){{e}^{-{{x}^{2}}}}+c \\
& \Rightarrow {{\left( y-x \right)}^{-2}}=\left( -{{x}^{2}}-1 \right)+c{{e}^{{{x}^{2}}}} \\
& \Rightarrow \dfrac{1}{{{\left( y-x \right)}^{2}}}=\left( c{{e}^{{{x}^{2}}}}-{{x}^{2}}-1 \right) \\
& \Rightarrow {{\left( y-x \right)}^{2}}\left( -{{x}^{2}}-1+c{{e}^{{{x}^{2}}}} \right)=1 \\
\end{align}\]
So, the correct answer is “Option D”.
Note: If we don’t take a differential then we have to take too many variables to compensate for the form and that will become very tough to solve after a time. That’s why the left-hand side has to be solved with the help of differentials.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
