
Find the solution for the given differential equation $x\cos x\left( \dfrac{dy}{dx} \right)+y\left( -x\sin x+\cos x \right)=1$?
(a) $xy=\left( x+c \right)\sec x$,
(b) $y=\dfrac{x+c}{x\cos x}$,
(c) $xy+\sin x+\operatorname{c}\cos x=0$,
(d) None of these.
Answer
572.1k+ views
Hint: We start solving the problem by dividing the given differential equation with $x\cos x$ on both sides. We can then see that the given form of differential equation resembles the form of linear differential equation. We then find the integrating factor for the differential equation. We then use this in the general form of the solution of linear differential equation $y{{e}^{\int{P\left( x \right)dx}}}=\int{\left( Q\left( x \right){{e}^{\int{P\left( x \right)dx}}} \right)dx}+C$ and make necessary arrangements to get the required solutions.
Complete step-by-step answer:
According to the problem, we need to find the solution for the given differential equation $x\cos x\left( \dfrac{dy}{dx} \right)+y\left( -x\sin x+\cos x \right)=1$.
So, we have $x\cos x\left( \dfrac{dy}{dx} \right)+y\left( -x\sin x+\cos x \right)=1$.
Let us divide both sides with $x\cos x$.
$\Rightarrow \dfrac{x\cos x\left( \dfrac{dy}{dx} \right)+y\left( -x\sin x+\cos x \right)}{x\cos x}=\dfrac{1}{x\cos x}$.
$\Rightarrow \dfrac{x\cos x}{x\cos x}\left( \dfrac{dy}{dx} \right)+\dfrac{y\left( -x\sin x+\cos x \right)}{x\cos x}=\dfrac{1}{x\cos x}$.
$\Rightarrow \dfrac{dy}{dx}+\left( \dfrac{-x\sin x+\cos x}{x\cos x} \right)y=\dfrac{1}{x\cos x}$ ---(1).
The differential equation in the equation (1) resembles the general form of the linear differential equation $\dfrac{dy}{dx}+P\left( x \right).y=Q\left( x \right)$. We know that the general solution for the linear differential equation is $y{{e}^{\int{P\left( x \right)dx}}}=\int{\left( Q\left( x \right){{e}^{\int{P\left( x \right)dx}}} \right)dx}+C$ ---(2).
From equation (1) we have $P\left( x \right)=\dfrac{\left( -x\sin x+\cos x \right)}{x\cos x}$ and $Q\left( x \right)=\dfrac{1}{x\cos x}$.
Let us first find $\int{P\left( x \right)dx}$.
So, we have $\int{P\left( x \right)dx}=\int{\left( \dfrac{-x\sin x+\cos x}{x\cos x} \right)dx}$ ---(3).
Let us assume $x\cos x=t$ ---(4). Let us differentiate on both sides.
$\Rightarrow d\left( x\cos x \right)=d\left( t \right)$.
We know that $d\left( uv \right)=udv+vdu$.
$\Rightarrow xd\left( \cos x \right)+\cos xd\left( x \right)=dt$.
We know that $d\left( \cos x \right)=-\sin xdx$.
$\Rightarrow x\left( -\sin xdx \right)+\cos xdx=dt$.
$\Rightarrow -x\sin xdx+\cos xdx=dt$.
$\Rightarrow \left( -x\sin x+\cos x \right)dx=dt$ ---(5).
Let us substitute equations (4) and (5) in equation (3).
$\Rightarrow \int{P\left( x \right)dx}=\int{\dfrac{dt}{t}}$.
We know that $\int{\dfrac{dx}{x}=\ln x+C}$.
$\Rightarrow \int{P\left( x \right)dx}=\ln t$. We don’t add integration constant while calculating Integrating factor.
From equation (4), we have $t=x\cos x$.
$\Rightarrow \int{P\left( x \right)dx}=\ln \left( x\cos x \right)$---(6).
Now, we use equation (6) in equation (2) to solve for the solution of the differential equation.
$\Rightarrow y{{e}^{\left( \ln \left( x\cos x \right) \right)}}=\int{\left( \left( \dfrac{1}{x\cos x} \right){{e}^{\left( \ln \left( x\cos x \right) \right)}} \right)dx}+C$.
We know that ${{e}^{\ln a}}=a$.
$\Rightarrow y\left( x\cos x \right)=\int{\left( \left( \dfrac{1}{x\cos x} \right)\times \left( x\cos x \right) \right)dx}+C$.
$\Rightarrow y\left( x\cos x \right)=\int{1dx}+C$.
We know that $\int{adx}=ax+C$.
$\Rightarrow xy\cos x=x+C$.
$\Rightarrow y=\dfrac{x+C}{x\cos x}$---(7).
$\Rightarrow xy=\left( x+C \right)\sec x$---(8).
From equations (7) and (8), we have found the solution for the differential equation as $y=\dfrac{x+C}{x\cos x}$ or $xy=\left( x+C \right)\sec x$.
So, the correct answer is “Option A and B”.
Note: We should confuse with the formulas of Integration while solving this problem. We should avoid calculation mistakes while solving this problem. We can also solve this problem by applying $d\left( x\cos x \right)=-x\sin xdx+\cos xdx$ at the start and then using \[-xy\sin x+y\cos x\]to complete the rest of the problem. This problem contains multiple correct options, so we need to be careful while answering.
Complete step-by-step answer:
According to the problem, we need to find the solution for the given differential equation $x\cos x\left( \dfrac{dy}{dx} \right)+y\left( -x\sin x+\cos x \right)=1$.
So, we have $x\cos x\left( \dfrac{dy}{dx} \right)+y\left( -x\sin x+\cos x \right)=1$.
Let us divide both sides with $x\cos x$.
$\Rightarrow \dfrac{x\cos x\left( \dfrac{dy}{dx} \right)+y\left( -x\sin x+\cos x \right)}{x\cos x}=\dfrac{1}{x\cos x}$.
$\Rightarrow \dfrac{x\cos x}{x\cos x}\left( \dfrac{dy}{dx} \right)+\dfrac{y\left( -x\sin x+\cos x \right)}{x\cos x}=\dfrac{1}{x\cos x}$.
$\Rightarrow \dfrac{dy}{dx}+\left( \dfrac{-x\sin x+\cos x}{x\cos x} \right)y=\dfrac{1}{x\cos x}$ ---(1).
The differential equation in the equation (1) resembles the general form of the linear differential equation $\dfrac{dy}{dx}+P\left( x \right).y=Q\left( x \right)$. We know that the general solution for the linear differential equation is $y{{e}^{\int{P\left( x \right)dx}}}=\int{\left( Q\left( x \right){{e}^{\int{P\left( x \right)dx}}} \right)dx}+C$ ---(2).
From equation (1) we have $P\left( x \right)=\dfrac{\left( -x\sin x+\cos x \right)}{x\cos x}$ and $Q\left( x \right)=\dfrac{1}{x\cos x}$.
Let us first find $\int{P\left( x \right)dx}$.
So, we have $\int{P\left( x \right)dx}=\int{\left( \dfrac{-x\sin x+\cos x}{x\cos x} \right)dx}$ ---(3).
Let us assume $x\cos x=t$ ---(4). Let us differentiate on both sides.
$\Rightarrow d\left( x\cos x \right)=d\left( t \right)$.
We know that $d\left( uv \right)=udv+vdu$.
$\Rightarrow xd\left( \cos x \right)+\cos xd\left( x \right)=dt$.
We know that $d\left( \cos x \right)=-\sin xdx$.
$\Rightarrow x\left( -\sin xdx \right)+\cos xdx=dt$.
$\Rightarrow -x\sin xdx+\cos xdx=dt$.
$\Rightarrow \left( -x\sin x+\cos x \right)dx=dt$ ---(5).
Let us substitute equations (4) and (5) in equation (3).
$\Rightarrow \int{P\left( x \right)dx}=\int{\dfrac{dt}{t}}$.
We know that $\int{\dfrac{dx}{x}=\ln x+C}$.
$\Rightarrow \int{P\left( x \right)dx}=\ln t$. We don’t add integration constant while calculating Integrating factor.
From equation (4), we have $t=x\cos x$.
$\Rightarrow \int{P\left( x \right)dx}=\ln \left( x\cos x \right)$---(6).
Now, we use equation (6) in equation (2) to solve for the solution of the differential equation.
$\Rightarrow y{{e}^{\left( \ln \left( x\cos x \right) \right)}}=\int{\left( \left( \dfrac{1}{x\cos x} \right){{e}^{\left( \ln \left( x\cos x \right) \right)}} \right)dx}+C$.
We know that ${{e}^{\ln a}}=a$.
$\Rightarrow y\left( x\cos x \right)=\int{\left( \left( \dfrac{1}{x\cos x} \right)\times \left( x\cos x \right) \right)dx}+C$.
$\Rightarrow y\left( x\cos x \right)=\int{1dx}+C$.
We know that $\int{adx}=ax+C$.
$\Rightarrow xy\cos x=x+C$.
$\Rightarrow y=\dfrac{x+C}{x\cos x}$---(7).
$\Rightarrow xy=\left( x+C \right)\sec x$---(8).
From equations (7) and (8), we have found the solution for the differential equation as $y=\dfrac{x+C}{x\cos x}$ or $xy=\left( x+C \right)\sec x$.
So, the correct answer is “Option A and B”.
Note: We should confuse with the formulas of Integration while solving this problem. We should avoid calculation mistakes while solving this problem. We can also solve this problem by applying $d\left( x\cos x \right)=-x\sin xdx+\cos xdx$ at the start and then using \[-xy\sin x+y\cos x\]to complete the rest of the problem. This problem contains multiple correct options, so we need to be careful while answering.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

