
How do you find the slope and intercept of $ y = - 5x - 4 $ ?
Answer
545.7k+ views
Hint: Since, we already have the equation in the slope-intercept form, we will compare it with $ y = mx + c $ to find the value of $ m $ as it represents as the slope of the line. Then, as we know that there are two kinds of intercepts which are $ x $ -intercept and $ y $ -intercept. So, $ x $ -intercept is the point where the line intersects the $ x $ -axis and $ y $ -intercept is the point where the line intersects the $ y $ -axis. So, to calculate the intercepts, we will put $ x $ and $ y $ as zero one by one.
Complete step-by-step answer:
(i)
We are given the line equation:
$ y = - 5x - 4 $
Now, since we have our equation in the slope-intercept form, we will compare the above equation with $ y = mx + c $ to find the value of $ m $ .
As we can see that the coefficient of $ x $ is $ m $ , in our equation the coefficient of $ x $ is $ - 5 $ .
i.e.,
$ m = - 5 $
Therefore, the slope of the equation $ y = - 5x - 4 $ is $ - 5 $
(ii)
Now, as we know that $ x $ -intercept is the point where the line crosses the $ x $ -axis and we also know that on $ x $ -axis, $ y = 0 $ . Therefore, to find the $ x $ -intercept, we will put $ y $ as $ 0 $ in the equation of line given to us. Therefore,
$
0 = - 5x - 4 \\
5x = - 4 \\
x = - \dfrac{4}{5} \;
$
Therefore, the $ x $ -intercept of the equation $ y = - 5x - 4 $ is $ - \dfrac{4}{5} $ .
(iii)
Similar to $ x $ -intercept, $ y $ -intercept is the point where the line crosses the $ y $ -axis and we also know that on $ y $ -axis, $ x $ =0. Therefore, to find $ y $ -intercept, we will put $ x $ as $ 0 $ in the equation of the line given to us. Therefore,
$
y = - 5\left( 0 \right) - 4 \\
y = - 4 \;
$
Therefore, the $ y $ -intercept of the equation $ y = - 5x - 4 $ is $ - 4 $ .
Note: A line parallel to $ x $ -axis, does not intersect the $ x $ -axis at any finite distance and hence, we cannot get any finite $ x $ -intercept of such a line. Slope of such a line is $ 0 $ . Similarly, lines parallel to the $ y $ -axis, do not intersect $ y $ -axis at any finite distance and hence, we cannot get any finite $ y $ -intercept of such a line. Slope of such a line is $ \infty $ .
In an equation of the form $ y = mx + c $ , $ m $ represents the slope of the line and $ c $ represents the vertical intercept or $ y $ -intercept of the line as it is the value of $ y $ when $ x = 0 $ . Also, there is an alternative method to find the intercepts of a line equation. Convert the given line equation into intercept form of a line i.e., $ \dfrac{x}{a} + \dfrac{y}{b} = 1 $ , where $ a $ is the $ x $ -intercept and $ b $ is the $ y $ -intercept.
Complete step-by-step answer:
(i)
We are given the line equation:
$ y = - 5x - 4 $
Now, since we have our equation in the slope-intercept form, we will compare the above equation with $ y = mx + c $ to find the value of $ m $ .
As we can see that the coefficient of $ x $ is $ m $ , in our equation the coefficient of $ x $ is $ - 5 $ .
i.e.,
$ m = - 5 $
Therefore, the slope of the equation $ y = - 5x - 4 $ is $ - 5 $
(ii)
Now, as we know that $ x $ -intercept is the point where the line crosses the $ x $ -axis and we also know that on $ x $ -axis, $ y = 0 $ . Therefore, to find the $ x $ -intercept, we will put $ y $ as $ 0 $ in the equation of line given to us. Therefore,
$
0 = - 5x - 4 \\
5x = - 4 \\
x = - \dfrac{4}{5} \;
$
Therefore, the $ x $ -intercept of the equation $ y = - 5x - 4 $ is $ - \dfrac{4}{5} $ .
(iii)
Similar to $ x $ -intercept, $ y $ -intercept is the point where the line crosses the $ y $ -axis and we also know that on $ y $ -axis, $ x $ =0. Therefore, to find $ y $ -intercept, we will put $ x $ as $ 0 $ in the equation of the line given to us. Therefore,
$
y = - 5\left( 0 \right) - 4 \\
y = - 4 \;
$
Therefore, the $ y $ -intercept of the equation $ y = - 5x - 4 $ is $ - 4 $ .
Note: A line parallel to $ x $ -axis, does not intersect the $ x $ -axis at any finite distance and hence, we cannot get any finite $ x $ -intercept of such a line. Slope of such a line is $ 0 $ . Similarly, lines parallel to the $ y $ -axis, do not intersect $ y $ -axis at any finite distance and hence, we cannot get any finite $ y $ -intercept of such a line. Slope of such a line is $ \infty $ .
In an equation of the form $ y = mx + c $ , $ m $ represents the slope of the line and $ c $ represents the vertical intercept or $ y $ -intercept of the line as it is the value of $ y $ when $ x = 0 $ . Also, there is an alternative method to find the intercepts of a line equation. Convert the given line equation into intercept form of a line i.e., $ \dfrac{x}{a} + \dfrac{y}{b} = 1 $ , where $ a $ is the $ x $ -intercept and $ b $ is the $ y $ -intercept.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

