
How do you find the sixth roots of $64i$? \[\]
Answer
561k+ views
Hint: We find the sixth root of $i$ using Demoivre’s theorem for $n=6$ ${{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta $ and then assume the root as $z=r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right)$. We design the equation ${{z}^{6}}={{64}^{i}}$ . We take $r=2$ and find a solution for angle $\theta $ . We use sine difference of angle formula $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ and cosine difference of angle $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$\[\]
Complete step by step answer:
We know the complex number $z$ can also be represented in the polar form
\[z=r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right)\]
We know from Demoivre’s theorem that for real angle $\theta $ and real integral exponent $n$ as
\[{{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta \]
Let us find six roots of $i$. We take $n=6$ in the above step and equate to $i$ to have
\[\begin{align}
& {{\left( \cos \theta +i\sin \theta \right)}^{6}}=\cos 6\theta +i\sin 6\theta =i. \\
& \Rightarrow \cos 6\theta +i\sin 6\theta =0+i\cdot 1 \\
& \Rightarrow \cos 6\theta +i\sin 6\theta =0\cdot \cos \left( \dfrac{\pi }{2} \right)+i\sin \left( \dfrac{\pi }{2} \right)....\left( 1 \right) \\
\end{align}\]
We equate imaginary parts from both sides to have;
\[\begin{align}
& \sin \left( 6\theta \right)=\sin \left( \dfrac{\pi }{2} \right) \\
& \Rightarrow 6\theta =\dfrac{\pi }{2} \\
& \Rightarrow \theta =\dfrac{\pi }{12} \\
\end{align}\]
So our principal angle is $\theta =\dfrac{\pi }{12}$. We can find the other angle by using periodicity of sine so that we can add multiples of $\dfrac{2\pi }{6}=\dfrac{\pi }{3}$ to satisfy the equation (1) as
\[\begin{align}
& \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)=\cos \left( \dfrac{\pi }{2}+2k\pi \right)+i\sin \left( \dfrac{\pi }{2}+2k\pi \right) \\
& \Rightarrow \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)=i,\left( k=1,2,3,4,5,6 \right) \\
\end{align}\]
Let us assume the sixth roots of $64i$ is $z={{e}^{i\theta }}$ which means the solutions of the equation
\[{{z}^{6}}=64i\]
We put $z=r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right)$ in the above step to have
\[\begin{align}
& {{z}^{6}}=64i \\
& \Rightarrow {{\left( r\left( \cos \theta +i\sin \theta \right) \right)}^{6}}=64i \\
& \Rightarrow {{r}^{6}}{{\left( \cos \theta +i\sin \theta \right)}^{6}}=64i \\
\end{align}\]
We see the above equation is valid only for $r=2$ since $r$ is always a positive and real number. We have already obtained values of $\theta $from sixth roots of $i$.So the sixth roots of $64i$ is
\[\begin{align}
& z=2\left( \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right) \right) \\
& \Rightarrow z=2\left( \cos \left( \dfrac{1+4k}{12}\pi \right)+i\sin \left( \dfrac{1+4k}{12}\pi \right) \right)\left( k=0,1,2,3,4,5 \right) \\
\end{align}\]
So the possible value of $\theta $ are
\[\theta =\dfrac{\pi }{12},\dfrac{5\pi }{12},\dfrac{9\pi }{12},\dfrac{13\pi }{12}=\pi +\dfrac{\pi }{12},\dfrac{17\pi }{12}=\pi +\dfrac{5\pi }{12},\dfrac{21\pi }{12}=\pi +\dfrac{9\pi }{12}\]
So by periodicity the solutions are \[\pm 2\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right),\pm 2\left( \cos \left( \dfrac{5\pi }{12} \right)+i\sin \left( \dfrac{5\pi }{12} \right) \right),\pm 2\left( \cos \left( \dfrac{9\pi }{12} \right)+i\sin \left( \dfrac{9\pi }{12} \right) \right)\]
We use the difference of angle formula to find the cosine value of $\dfrac{\pi }{12},\dfrac{5\pi }{12}$. We have
\[\begin{align}
& \sin \left( \dfrac{\pi }{12} \right)=\sin \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{3}\cos \dfrac{\pi }{4}-\cos \dfrac{\pi }{3}\sin \dfrac{\pi }{4}=\dfrac{\sqrt{3}}{2}\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\dfrac{\sqrt{2}}{2}=\dfrac{1}{4}\left( \sqrt{6}-\sqrt{2} \right) \\
& \cos \left( \dfrac{\pi }{12} \right)=\cos \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)=\cos \dfrac{\pi }{3}\cos \dfrac{\pi }{4}+\sin \dfrac{\pi }{3}\sin \dfrac{\pi }{4}=\dfrac{1}{2}\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{3}}{2}\dfrac{\sqrt{2}}{2}=\dfrac{1}{4}\left( \sqrt{6}+\sqrt{2} \right) \\
\end{align}\]
We use complementary angle relation between sine and cosine to have;
\[\begin{align}
& \sin \left( \dfrac{5\pi }{12} \right)=\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{12} \right)=\cos \dfrac{\pi }{12}=\dfrac{1}{4}\left( \sqrt{6}+2 \right) \\
& \cos \left( \dfrac{5\pi }{12} \right)=\cos \left( \dfrac{\pi }{2}-\dfrac{\pi }{12} \right)=\sin \dfrac{\pi }{12}=\dfrac{1}{4}\left( \sqrt{6}-2 \right) \\
\end{align}\]
We know from trigonometric table that
\[\begin{align}
& \sin \left( \dfrac{9\pi }{12} \right)=\sin \left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}} \\
& \cos \left( \dfrac{9\pi }{12} \right)=\cos \left( \dfrac{3\pi }{4} \right)=\dfrac{-1}{\sqrt{2}} \\
\end{align}\]
So the sixth roots of $64i$ are
\[\begin{align}
& \pm 2\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)=\pm \dfrac{1}{2}\left( \left( \sqrt{6}+\sqrt{2} \right)+i\left( \sqrt{6}-\sqrt{2} \right) \right) \\
& \pm 2\left( \cos \left( \dfrac{5\pi }{12} \right)+i\sin \left( \dfrac{5\pi }{12} \right) \right)=\pm \dfrac{1}{2}\left( \left( \sqrt{6}-\sqrt{2} \right)+i\left( \sqrt{6}+\sqrt{2} \right) \right) \\
& \pm 2\left( \cos \left( \dfrac{9\pi }{12} \right)+i\sin \left( \dfrac{9\pi }{12} \right) \right)=\pm \sqrt{2}\left( 1+i \right) \\
\end{align}\]
Note:
We note that if all the roots of equation ${{z}^{n}}=a$ where $a$ is any complex number and $n$is an integer, are complex then they occur in $\dfrac{n}{2}$ pairs of conjugates in the form $\left( a+ib \right),\left( a-ib \right)$. Here we obtained $\dfrac{6}{2}=3$pairs of conjugate roots. We should also note that two complex numbers are equal if their real and imaginary parts are equal.
Complete step by step answer:
We know the complex number $z$ can also be represented in the polar form
\[z=r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right)\]
We know from Demoivre’s theorem that for real angle $\theta $ and real integral exponent $n$ as
\[{{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta \]
Let us find six roots of $i$. We take $n=6$ in the above step and equate to $i$ to have
\[\begin{align}
& {{\left( \cos \theta +i\sin \theta \right)}^{6}}=\cos 6\theta +i\sin 6\theta =i. \\
& \Rightarrow \cos 6\theta +i\sin 6\theta =0+i\cdot 1 \\
& \Rightarrow \cos 6\theta +i\sin 6\theta =0\cdot \cos \left( \dfrac{\pi }{2} \right)+i\sin \left( \dfrac{\pi }{2} \right)....\left( 1 \right) \\
\end{align}\]
We equate imaginary parts from both sides to have;
\[\begin{align}
& \sin \left( 6\theta \right)=\sin \left( \dfrac{\pi }{2} \right) \\
& \Rightarrow 6\theta =\dfrac{\pi }{2} \\
& \Rightarrow \theta =\dfrac{\pi }{12} \\
\end{align}\]
So our principal angle is $\theta =\dfrac{\pi }{12}$. We can find the other angle by using periodicity of sine so that we can add multiples of $\dfrac{2\pi }{6}=\dfrac{\pi }{3}$ to satisfy the equation (1) as
\[\begin{align}
& \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)=\cos \left( \dfrac{\pi }{2}+2k\pi \right)+i\sin \left( \dfrac{\pi }{2}+2k\pi \right) \\
& \Rightarrow \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)=i,\left( k=1,2,3,4,5,6 \right) \\
\end{align}\]
Let us assume the sixth roots of $64i$ is $z={{e}^{i\theta }}$ which means the solutions of the equation
\[{{z}^{6}}=64i\]
We put $z=r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right)$ in the above step to have
\[\begin{align}
& {{z}^{6}}=64i \\
& \Rightarrow {{\left( r\left( \cos \theta +i\sin \theta \right) \right)}^{6}}=64i \\
& \Rightarrow {{r}^{6}}{{\left( \cos \theta +i\sin \theta \right)}^{6}}=64i \\
\end{align}\]
We see the above equation is valid only for $r=2$ since $r$ is always a positive and real number. We have already obtained values of $\theta $from sixth roots of $i$.So the sixth roots of $64i$ is
\[\begin{align}
& z=2\left( \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right) \right) \\
& \Rightarrow z=2\left( \cos \left( \dfrac{1+4k}{12}\pi \right)+i\sin \left( \dfrac{1+4k}{12}\pi \right) \right)\left( k=0,1,2,3,4,5 \right) \\
\end{align}\]
So the possible value of $\theta $ are
\[\theta =\dfrac{\pi }{12},\dfrac{5\pi }{12},\dfrac{9\pi }{12},\dfrac{13\pi }{12}=\pi +\dfrac{\pi }{12},\dfrac{17\pi }{12}=\pi +\dfrac{5\pi }{12},\dfrac{21\pi }{12}=\pi +\dfrac{9\pi }{12}\]
So by periodicity the solutions are \[\pm 2\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right),\pm 2\left( \cos \left( \dfrac{5\pi }{12} \right)+i\sin \left( \dfrac{5\pi }{12} \right) \right),\pm 2\left( \cos \left( \dfrac{9\pi }{12} \right)+i\sin \left( \dfrac{9\pi }{12} \right) \right)\]
We use the difference of angle formula to find the cosine value of $\dfrac{\pi }{12},\dfrac{5\pi }{12}$. We have
\[\begin{align}
& \sin \left( \dfrac{\pi }{12} \right)=\sin \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{3}\cos \dfrac{\pi }{4}-\cos \dfrac{\pi }{3}\sin \dfrac{\pi }{4}=\dfrac{\sqrt{3}}{2}\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\dfrac{\sqrt{2}}{2}=\dfrac{1}{4}\left( \sqrt{6}-\sqrt{2} \right) \\
& \cos \left( \dfrac{\pi }{12} \right)=\cos \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)=\cos \dfrac{\pi }{3}\cos \dfrac{\pi }{4}+\sin \dfrac{\pi }{3}\sin \dfrac{\pi }{4}=\dfrac{1}{2}\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{3}}{2}\dfrac{\sqrt{2}}{2}=\dfrac{1}{4}\left( \sqrt{6}+\sqrt{2} \right) \\
\end{align}\]
We use complementary angle relation between sine and cosine to have;
\[\begin{align}
& \sin \left( \dfrac{5\pi }{12} \right)=\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{12} \right)=\cos \dfrac{\pi }{12}=\dfrac{1}{4}\left( \sqrt{6}+2 \right) \\
& \cos \left( \dfrac{5\pi }{12} \right)=\cos \left( \dfrac{\pi }{2}-\dfrac{\pi }{12} \right)=\sin \dfrac{\pi }{12}=\dfrac{1}{4}\left( \sqrt{6}-2 \right) \\
\end{align}\]
We know from trigonometric table that
\[\begin{align}
& \sin \left( \dfrac{9\pi }{12} \right)=\sin \left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}} \\
& \cos \left( \dfrac{9\pi }{12} \right)=\cos \left( \dfrac{3\pi }{4} \right)=\dfrac{-1}{\sqrt{2}} \\
\end{align}\]
So the sixth roots of $64i$ are
\[\begin{align}
& \pm 2\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)=\pm \dfrac{1}{2}\left( \left( \sqrt{6}+\sqrt{2} \right)+i\left( \sqrt{6}-\sqrt{2} \right) \right) \\
& \pm 2\left( \cos \left( \dfrac{5\pi }{12} \right)+i\sin \left( \dfrac{5\pi }{12} \right) \right)=\pm \dfrac{1}{2}\left( \left( \sqrt{6}-\sqrt{2} \right)+i\left( \sqrt{6}+\sqrt{2} \right) \right) \\
& \pm 2\left( \cos \left( \dfrac{9\pi }{12} \right)+i\sin \left( \dfrac{9\pi }{12} \right) \right)=\pm \sqrt{2}\left( 1+i \right) \\
\end{align}\]
Note:
We note that if all the roots of equation ${{z}^{n}}=a$ where $a$ is any complex number and $n$is an integer, are complex then they occur in $\dfrac{n}{2}$ pairs of conjugates in the form $\left( a+ib \right),\left( a-ib \right)$. Here we obtained $\dfrac{6}{2}=3$pairs of conjugate roots. We should also note that two complex numbers are equal if their real and imaginary parts are equal.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

