
How do you find the six trigonometric functions of 420 degrees?
Answer
550.2k+ views
Hint:
We start solving the problem by considering the sine of the given angle. We then make use of the facts that $ \sin \left( {{360}^{\circ }}+\theta \right)=\sin \theta $ and $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} $ to get the value of $ \sin {{420}^{\circ }} $ . We then consider the cosine of the given angle. We then make use of the facts that $ \cos \left( {{360}^{\circ }}+\theta \right)=\cos \theta $ and $ \cos {{60}^{\circ }}=\dfrac{1}{2} $ to get the value of $ \cos {{420}^{\circ }} $ . We then make use of the facts $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ , $ \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } $ , $ \sec \theta =\dfrac{1}{\cos \theta } $ and $ \cot \theta =\dfrac{1}{\tan \theta } $ to get the value of the other trigonometric functions at the given angle.
Complete step by step answer:
According to the problem, we are asked to find the values of the six trigonometric functions of 420 degrees.
Let us first find the value of the sine function of 420 degrees.
So, we have $ \sin \left( {{420}^{\circ }} \right)=\sin \left( {{360}^{\circ }}+{{60}^{\circ }} \right) $ ---(1).
We know that $ \sin \left( {{360}^{\circ }}+\theta \right)=\sin \theta $ . Let us use this result in equation (1).
$ \Rightarrow \sin \left( {{420}^{\circ }} \right)=\sin {{60}^{\circ }} $ ---(2).
We know that $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this result in equation (2).
$ \Rightarrow \sin \left( {{420}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ ---(3).
Now, let us first find the value of the cosine function of 420 degrees.
So, we have $ \cos \left( {{420}^{\circ }} \right)=\cos \left( {{360}^{\circ }}+{{60}^{\circ }} \right) $ ---(4).
We know that $ \cos \left( {{360}^{\circ }}+\theta \right)=\cos \theta $ . Let us use this result in equation (4).
$ \Rightarrow \cos \left( {{420}^{\circ }} \right)=\cos {{60}^{\circ }} $ ---(5).
We know that $ \cos {{60}^{\circ }}=\dfrac{1}{2} $ . Let us use this result in equation (5).
$ \Rightarrow \cos \left( {{420}^{\circ }} \right)=\dfrac{1}{2} $ ---(6).
Now, we know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ .
From equations (3) and (6) we get $ \tan \left( {{420}^{\circ }} \right)=\dfrac{\sin \left( {{420}^{\circ }} \right)}{\cos \left( {{420}^{\circ }} \right)}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} $ .
$ \Rightarrow \tan \left( {{420}^{\circ }} \right)=\sqrt{3} $ ---(7).
We know that $ \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } $ .
From equation (3), we get $ \operatorname{cosec}\left( {{420}^{\circ }} \right)=\dfrac{1}{\sin \left( {{420}^{\circ }} \right)}=\dfrac{1}{\dfrac{\sqrt{3}}{2}} $ .
$ \Rightarrow \operatorname{cosec}\left( {{420}^{\circ }} \right)=\dfrac{2}{\sqrt{3}} $ .
We know that $ \sec \theta =\dfrac{1}{\cos \theta } $ .
From equation (6), we get $ \sec \left( {{420}^{\circ }} \right)=\dfrac{1}{\cos \left( {{420}^{\circ }} \right)}=\dfrac{1}{\dfrac{1}{2}} $ .
$ \Rightarrow \sec \left( {{420}^{\circ }} \right)=2 $ .
We know that $ \cot \theta =\dfrac{1}{\tan \theta } $ .
From equation (3), we get $ \cot \left( {{420}^{\circ }} \right)=\dfrac{1}{\tan \left( {{420}^{\circ }} \right)}=\dfrac{1}{\sqrt{3}} $ .
$ \Rightarrow \cot \left( {{420}^{\circ }} \right)=\dfrac{1}{\sqrt{3}} $ .
Note:
Whenever we get this type of problems, we try to make use of the trigonometric identities and then try to write the angles into the ones between $ {{0}^{\circ }} $ and $ {{90}^{\circ }} $ to make the calculation simpler. We should not make calculation mistakes while solving this problem. We can also find the equivalent value of the given angle by subtracting it with the multiple of $ {{360}^{\circ }} $ to get them between $ {{0}^{\circ }} $ and $ {{90}^{\circ }} $ . Similarly, we can expect problems to find the values of all trigonometric functions at –300 degrees.
We start solving the problem by considering the sine of the given angle. We then make use of the facts that $ \sin \left( {{360}^{\circ }}+\theta \right)=\sin \theta $ and $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} $ to get the value of $ \sin {{420}^{\circ }} $ . We then consider the cosine of the given angle. We then make use of the facts that $ \cos \left( {{360}^{\circ }}+\theta \right)=\cos \theta $ and $ \cos {{60}^{\circ }}=\dfrac{1}{2} $ to get the value of $ \cos {{420}^{\circ }} $ . We then make use of the facts $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ , $ \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } $ , $ \sec \theta =\dfrac{1}{\cos \theta } $ and $ \cot \theta =\dfrac{1}{\tan \theta } $ to get the value of the other trigonometric functions at the given angle.
Complete step by step answer:
According to the problem, we are asked to find the values of the six trigonometric functions of 420 degrees.
Let us first find the value of the sine function of 420 degrees.
So, we have $ \sin \left( {{420}^{\circ }} \right)=\sin \left( {{360}^{\circ }}+{{60}^{\circ }} \right) $ ---(1).
We know that $ \sin \left( {{360}^{\circ }}+\theta \right)=\sin \theta $ . Let us use this result in equation (1).
$ \Rightarrow \sin \left( {{420}^{\circ }} \right)=\sin {{60}^{\circ }} $ ---(2).
We know that $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this result in equation (2).
$ \Rightarrow \sin \left( {{420}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ ---(3).
Now, let us first find the value of the cosine function of 420 degrees.
So, we have $ \cos \left( {{420}^{\circ }} \right)=\cos \left( {{360}^{\circ }}+{{60}^{\circ }} \right) $ ---(4).
We know that $ \cos \left( {{360}^{\circ }}+\theta \right)=\cos \theta $ . Let us use this result in equation (4).
$ \Rightarrow \cos \left( {{420}^{\circ }} \right)=\cos {{60}^{\circ }} $ ---(5).
We know that $ \cos {{60}^{\circ }}=\dfrac{1}{2} $ . Let us use this result in equation (5).
$ \Rightarrow \cos \left( {{420}^{\circ }} \right)=\dfrac{1}{2} $ ---(6).
Now, we know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ .
From equations (3) and (6) we get $ \tan \left( {{420}^{\circ }} \right)=\dfrac{\sin \left( {{420}^{\circ }} \right)}{\cos \left( {{420}^{\circ }} \right)}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} $ .
$ \Rightarrow \tan \left( {{420}^{\circ }} \right)=\sqrt{3} $ ---(7).
We know that $ \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } $ .
From equation (3), we get $ \operatorname{cosec}\left( {{420}^{\circ }} \right)=\dfrac{1}{\sin \left( {{420}^{\circ }} \right)}=\dfrac{1}{\dfrac{\sqrt{3}}{2}} $ .
$ \Rightarrow \operatorname{cosec}\left( {{420}^{\circ }} \right)=\dfrac{2}{\sqrt{3}} $ .
We know that $ \sec \theta =\dfrac{1}{\cos \theta } $ .
From equation (6), we get $ \sec \left( {{420}^{\circ }} \right)=\dfrac{1}{\cos \left( {{420}^{\circ }} \right)}=\dfrac{1}{\dfrac{1}{2}} $ .
$ \Rightarrow \sec \left( {{420}^{\circ }} \right)=2 $ .
We know that $ \cot \theta =\dfrac{1}{\tan \theta } $ .
From equation (3), we get $ \cot \left( {{420}^{\circ }} \right)=\dfrac{1}{\tan \left( {{420}^{\circ }} \right)}=\dfrac{1}{\sqrt{3}} $ .
$ \Rightarrow \cot \left( {{420}^{\circ }} \right)=\dfrac{1}{\sqrt{3}} $ .
Note:
Whenever we get this type of problems, we try to make use of the trigonometric identities and then try to write the angles into the ones between $ {{0}^{\circ }} $ and $ {{90}^{\circ }} $ to make the calculation simpler. We should not make calculation mistakes while solving this problem. We can also find the equivalent value of the given angle by subtracting it with the multiple of $ {{360}^{\circ }} $ to get them between $ {{0}^{\circ }} $ and $ {{90}^{\circ }} $ . Similarly, we can expect problems to find the values of all trigonometric functions at –300 degrees.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

