
Find the shortest distance between the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\].
Answer
499.5k+ views
Hint: We need to find the shortest distance between the given two lines. We will directly use the formula for the shortest distance between two lines. Let \[\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}}\] and \[\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}}\] be two lines. Let \[d\] denote the shortest distance between these two lines. Then,
\[d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{({b_1}{c_2} - {b_2}{c_1})}^2} + {{({c_1}{a_2} - {c_2}{a_1})}^2} + {{({a_1}{b_2} - {a_2}{b_1})}^2}} }}} \right|\],
Where,
\[\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}({a_{22}}{a_{33}} - {a_{32}}{a_{23}}) - {a_{12}}({a_{21}}{a_{33}} - {a_{31}}{a_{23}}) + {a_{13}}({a_{21}}{a_{32}} - {a_{31}}{a_{22}})\]
And the outer Lines indicate the modulus sign.
Complete step-by-step solution:
We need to find the distance between the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\].
Comparing \[\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}}\] and \[\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}}\] with \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\] respectively, we get
\[{x_1} = 1,{y_1} = 2,{z_1} = 3 - - - - - ()\]
\[{x_2} = 2,{y_2} = 4,{z_2} = 5 - - - - - (2)\]
\[{a_1} = 2,{b_1} = 3,{c_1} = 4 - - - - - (3)\]
\[{a_2} = 3,{b_2} = 4,{c_2} = 5 - - - - - (4)\]
Let \[d\] be the shortest distance between the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\].
Substituting the values from (1), (2), (3) and (4) in the formula
\[d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{({b_1}{c_2} - {b_2}{c_1})}^2} + {{({c_1}{a_2} - {c_2}{a_1})}^2} + {{({a_1}{b_2} - {a_2}{b_1})}^2}} }}} \right|\]
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
{2 - 1}&{4 - 2}&{5 - 3} \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt {{{\left( {(3 \times 5) - (4 \times 4)} \right)}^2} + {{\left( {(4 \times 3) - (5 \times 2)} \right)}^2} + {{\left( {(2 \times 4) - (3 \times 3)} \right)}^2}} }}} \right|\]
Solving the brackets, we get
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt {{{\left( {(15) - (16)} \right)}^2} + {{\left( {(12) - (10)} \right)}^2} + {{\left( {(8) - (9)} \right)}^2}} }}} \right|\]
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} }}} \right|\]
Now, solving the denominator using \[{a^2} = a \times a\]
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt {1 + 4 + 1} }}} \right|\]
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt 6 }}} \right| - - - - - - (5)\]
Now, solving the numerator part and substituting it in (5).
Solving \[\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|\] now,
\[\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = 1\left( {(3 \times 5) - (4 \times 4)} \right) - 2\left( {(2 \times 5) - (3 \times 4)} \right) + 2\left( {(2 \times 4) - (3 \times 3)} \right)\]
Solving the brackets, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = 1\left( {(15) - (16)} \right) - 2\left( {(10) - (12)} \right) + 2\left( {(8) - (9)} \right)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = 1\left( { - 1} \right) - 2\left( { - 2} \right) + 2\left( { - 1} \right)\]
Multiplying the brackets,
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = - 1 + 4 + - 2\]
Now solving the right hand side
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = - 3 + 4\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = 1 - - - - - - (6)\]
Now, substituting (6) in (5), we get
\[ \Rightarrow d = \left| {\dfrac{1}{{\sqrt 6 }}} \right|\]
Since \[\dfrac{1}{{\sqrt 6 }}\] is positive, \[\left| {\dfrac{1}{{\sqrt 6 }}} \right|\]is equal to \[\dfrac{1}{{\sqrt 6 }}\].
Hence, we get \[d = \dfrac{1}{{\sqrt 6 }}\].
Therefore, the shortest distance between the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\] is \[\dfrac{1}{{\sqrt 6 }}\] units.
Note: First of all, we need to see the type of lines given in the question. We usually mix the formulas for the shortest distance between the two lines and the perpendicular distance from the origin to a line. Also, to find the shortest distance, we should compare the values with full concentration as if we compare the wrong values, we will get the wrong answer. In case, we have got our answer for the numerator to be negative, we will have to use modulus properties then as distance can never be negative.
\[d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{({b_1}{c_2} - {b_2}{c_1})}^2} + {{({c_1}{a_2} - {c_2}{a_1})}^2} + {{({a_1}{b_2} - {a_2}{b_1})}^2}} }}} \right|\],
Where,
\[\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}({a_{22}}{a_{33}} - {a_{32}}{a_{23}}) - {a_{12}}({a_{21}}{a_{33}} - {a_{31}}{a_{23}}) + {a_{13}}({a_{21}}{a_{32}} - {a_{31}}{a_{22}})\]
And the outer Lines indicate the modulus sign.
Complete step-by-step solution:
We need to find the distance between the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\].
Comparing \[\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}}\] and \[\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}}\] with \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\] respectively, we get
\[{x_1} = 1,{y_1} = 2,{z_1} = 3 - - - - - ()\]
\[{x_2} = 2,{y_2} = 4,{z_2} = 5 - - - - - (2)\]
\[{a_1} = 2,{b_1} = 3,{c_1} = 4 - - - - - (3)\]
\[{a_2} = 3,{b_2} = 4,{c_2} = 5 - - - - - (4)\]
Let \[d\] be the shortest distance between the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\].
Substituting the values from (1), (2), (3) and (4) in the formula
\[d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{({b_1}{c_2} - {b_2}{c_1})}^2} + {{({c_1}{a_2} - {c_2}{a_1})}^2} + {{({a_1}{b_2} - {a_2}{b_1})}^2}} }}} \right|\]
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
{2 - 1}&{4 - 2}&{5 - 3} \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt {{{\left( {(3 \times 5) - (4 \times 4)} \right)}^2} + {{\left( {(4 \times 3) - (5 \times 2)} \right)}^2} + {{\left( {(2 \times 4) - (3 \times 3)} \right)}^2}} }}} \right|\]
Solving the brackets, we get
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt {{{\left( {(15) - (16)} \right)}^2} + {{\left( {(12) - (10)} \right)}^2} + {{\left( {(8) - (9)} \right)}^2}} }}} \right|\]
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} }}} \right|\]
Now, solving the denominator using \[{a^2} = a \times a\]
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt {1 + 4 + 1} }}} \right|\]
\[ \Rightarrow d = \left| {\dfrac{{\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|}}{{\sqrt 6 }}} \right| - - - - - - (5)\]
Now, solving the numerator part and substituting it in (5).
Solving \[\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right|\] now,
\[\left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = 1\left( {(3 \times 5) - (4 \times 4)} \right) - 2\left( {(2 \times 5) - (3 \times 4)} \right) + 2\left( {(2 \times 4) - (3 \times 3)} \right)\]
Solving the brackets, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = 1\left( {(15) - (16)} \right) - 2\left( {(10) - (12)} \right) + 2\left( {(8) - (9)} \right)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = 1\left( { - 1} \right) - 2\left( { - 2} \right) + 2\left( { - 1} \right)\]
Multiplying the brackets,
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = - 1 + 4 + - 2\]
Now solving the right hand side
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = - 3 + 4\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&2&2 \\
2&3&4 \\
3&4&5
\end{array}} \right| = 1 - - - - - - (6)\]
Now, substituting (6) in (5), we get
\[ \Rightarrow d = \left| {\dfrac{1}{{\sqrt 6 }}} \right|\]
Since \[\dfrac{1}{{\sqrt 6 }}\] is positive, \[\left| {\dfrac{1}{{\sqrt 6 }}} \right|\]is equal to \[\dfrac{1}{{\sqrt 6 }}\].
Hence, we get \[d = \dfrac{1}{{\sqrt 6 }}\].
Therefore, the shortest distance between the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 4}}{4} = \dfrac{{z - 5}}{5}\] is \[\dfrac{1}{{\sqrt 6 }}\] units.
Note: First of all, we need to see the type of lines given in the question. We usually mix the formulas for the shortest distance between the two lines and the perpendicular distance from the origin to a line. Also, to find the shortest distance, we should compare the values with full concentration as if we compare the wrong values, we will get the wrong answer. In case, we have got our answer for the numerator to be negative, we will have to use modulus properties then as distance can never be negative.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

