Answer
Verified
439.5k+ views
Hint: In order to solve this problem, we need to know the formula for the shortest distance. The formula for shortest distance of lines represented by $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $ and $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ is as follows,
Shortest distance = $ \left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right| $ .We can calculate the denominator by cross-product and solve the numerator by the dot product.
Complete step-by-step answer:
We need to find the shortest distance between two lines.
Let's compare the first equation $ \vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i}+\hat{j}+4\hat{k} \right) $ to $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $
We get,
$ {{\vec{a}}_{1}}=\hat{i}+2\hat{j}+3\hat{k} $
\[{{\bar{b}}_{1}}=2\hat{i}+\hat{j}+4\hat{k}\]
Now comparing the second equation $ \vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+4\hat{j}+5\hat{k} \right) $ with $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ we get,
\[{{\bar{a}}_{2}}=2\hat{i}+4\hat{j}+5\hat{k}\]
\[{{\bar{b}}_{2}}=3\hat{i}+4\hat{j}+5\hat{k}\]
The formula for shortest distance of lines represented by $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $ and $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ is as follows,
Shortest distance = $ \left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|..............................(i) $
Now we need to find the value of $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ ,
Substituting the values, we get,
$ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2\hat{i}+4\hat{j}+5\hat{k} \right)-\left( \hat{i}+2\hat{j}+3\hat{k} \right) $
Solving we get,
$ \begin{align}
& \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2-1 \right)\hat{i}+\left( 4-2 \right)\hat{j}+\left( 5-3 \right)\hat{k} \\
& =\hat{i}+2\hat{j}+2\hat{k}..................................(ii)
\end{align} $
Now finding the value of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ .
We need to find the cross product of the above vectors.
\[{{\bar{b}}_{1}}\times {{\bar{b}}_{2}}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
2 & 1 & 4 \\
3 & 4 & 5 \\
\end{matrix} \right|\]
Where along the second row we have the components of $ {{\vec{b}}_{1}} $ and along the third row we have the components of $ {{\vec{b}}_{2}} $ .
Solving this we get,
$ \begin{align}
& {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left( 5-16 \right)\hat{i}-\left( 10-12 \right)\hat{j}+\left( 8-3 \right)\hat{k} \\
& =-11\hat{i}+2\hat{j}+5\hat{k}.................................(iii)
\end{align} $
We also need to find the magnitude of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ that is $ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right| $ .
Therefore, we get,
$ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{{{\left( -11 \right)}^{2}}+{{\left( 2 \right)}^{2}}+{{\left( 5 \right)}^{2}}} $
This is obtained by squaring all the terms, adding them up and taking the square root.
Solving this we get,
$ \begin{align}
& \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{121+4+25} \\
& =\sqrt{150}
\end{align} $
Substituting all the values in equation (i), we get,
Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $
Solving this and taking the dot product in the numerator we get,
Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $
In dot product, we need to add the multiplication of the $ {{i}^{th}} $ , $ {{j}^{th}} $ and the $ {{k}^{th}} $ component.
Solving this we get,
$ \begin{align}
& \text{Shortest distance}=\left| \dfrac{-11+4+10}{\sqrt{150}} \right| \\
& =\dfrac{3}{\sqrt{150}} \\
& =\dfrac{\sqrt{3}\times \sqrt{3}}{\sqrt{3\times 5\times 2\times 5}} \\
& =\dfrac{\sqrt{3}}{\sqrt{5\times 2\times 5}} \\
& =\dfrac{\sqrt{3}}{5\sqrt{2}} \\
& =\dfrac{\sqrt{3}\times \sqrt{2}}{5\sqrt{2}\times \sqrt{2}} \\
& =\dfrac{\sqrt{6}}{5\times 2} \\
& =\dfrac{\sqrt{6}}{10}
\end{align} $
Hence the shortest distance between two lines is $ \dfrac{\sqrt{6}}{10} $ units.
Note: We need to be careful while performing the cross product there is a negative sign in the $ \hat{j} $ part. We have asked to find the distance therefore, we need to take the modulus of all the scalar terms. Also, while calculating $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ and not $ \left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right) $ .
Shortest distance = $ \left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right| $ .We can calculate the denominator by cross-product and solve the numerator by the dot product.
Complete step-by-step answer:
We need to find the shortest distance between two lines.
Let's compare the first equation $ \vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i}+\hat{j}+4\hat{k} \right) $ to $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $
We get,
$ {{\vec{a}}_{1}}=\hat{i}+2\hat{j}+3\hat{k} $
\[{{\bar{b}}_{1}}=2\hat{i}+\hat{j}+4\hat{k}\]
Now comparing the second equation $ \vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+4\hat{j}+5\hat{k} \right) $ with $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ we get,
\[{{\bar{a}}_{2}}=2\hat{i}+4\hat{j}+5\hat{k}\]
\[{{\bar{b}}_{2}}=3\hat{i}+4\hat{j}+5\hat{k}\]
The formula for shortest distance of lines represented by $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $ and $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ is as follows,
Shortest distance = $ \left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|..............................(i) $
Now we need to find the value of $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ ,
Substituting the values, we get,
$ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2\hat{i}+4\hat{j}+5\hat{k} \right)-\left( \hat{i}+2\hat{j}+3\hat{k} \right) $
Solving we get,
$ \begin{align}
& \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2-1 \right)\hat{i}+\left( 4-2 \right)\hat{j}+\left( 5-3 \right)\hat{k} \\
& =\hat{i}+2\hat{j}+2\hat{k}..................................(ii)
\end{align} $
Now finding the value of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ .
We need to find the cross product of the above vectors.
\[{{\bar{b}}_{1}}\times {{\bar{b}}_{2}}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
2 & 1 & 4 \\
3 & 4 & 5 \\
\end{matrix} \right|\]
Where along the second row we have the components of $ {{\vec{b}}_{1}} $ and along the third row we have the components of $ {{\vec{b}}_{2}} $ .
Solving this we get,
$ \begin{align}
& {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left( 5-16 \right)\hat{i}-\left( 10-12 \right)\hat{j}+\left( 8-3 \right)\hat{k} \\
& =-11\hat{i}+2\hat{j}+5\hat{k}.................................(iii)
\end{align} $
We also need to find the magnitude of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ that is $ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right| $ .
Therefore, we get,
$ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{{{\left( -11 \right)}^{2}}+{{\left( 2 \right)}^{2}}+{{\left( 5 \right)}^{2}}} $
This is obtained by squaring all the terms, adding them up and taking the square root.
Solving this we get,
$ \begin{align}
& \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{121+4+25} \\
& =\sqrt{150}
\end{align} $
Substituting all the values in equation (i), we get,
Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $
Solving this and taking the dot product in the numerator we get,
Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $
In dot product, we need to add the multiplication of the $ {{i}^{th}} $ , $ {{j}^{th}} $ and the $ {{k}^{th}} $ component.
Solving this we get,
$ \begin{align}
& \text{Shortest distance}=\left| \dfrac{-11+4+10}{\sqrt{150}} \right| \\
& =\dfrac{3}{\sqrt{150}} \\
& =\dfrac{\sqrt{3}\times \sqrt{3}}{\sqrt{3\times 5\times 2\times 5}} \\
& =\dfrac{\sqrt{3}}{\sqrt{5\times 2\times 5}} \\
& =\dfrac{\sqrt{3}}{5\sqrt{2}} \\
& =\dfrac{\sqrt{3}\times \sqrt{2}}{5\sqrt{2}\times \sqrt{2}} \\
& =\dfrac{\sqrt{6}}{5\times 2} \\
& =\dfrac{\sqrt{6}}{10}
\end{align} $
Hence the shortest distance between two lines is $ \dfrac{\sqrt{6}}{10} $ units.
Note: We need to be careful while performing the cross product there is a negative sign in the $ \hat{j} $ part. We have asked to find the distance therefore, we need to take the modulus of all the scalar terms. Also, while calculating $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ and not $ \left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right) $ .
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE