
Find the second derivative of the following function.
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\]
Answer
509.4k+ views
Hint: Apply multiplication of rule of differentiation and take care of chain rule as well whenever required. Both are given as,
Chain Rule: $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$
Multiplication Rule of differentiation: -
$\dfrac{d}{dx}\left( u\left( x \right).v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}$
Complete step by step answer:
We have the function
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] -(1)
Here, we can observe that \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] has two functions \[{{x}^{2}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] in multiplication. So, for the differentiation of function ‘y’ we need to apply multiplication rule of differentiation as stated below: -
If we have two functions u(x) and v(x) in multiplication as
\[y=u\left( x \right)v\left( x \right)\]
Then we can differentiate the above expression in following manner: -
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( u\left( x \right)v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}-(2)\]
Now, coming to the question or equation (1)
We can observe that we have \[u={{x}^{2}}\] and \[v=\sqrt{1+{{x}^{2}}}\] from equation (2)
Hence,
\[\begin{align}
& \dfrac{d}{dx}\left( {{x}^{2}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
& \dfrac{dy}{dx}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}2x+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
Here we have to apply chain rule with \[\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] as stated below: -
If we have an implicit function like two or more function involved as \[f\left( g\left( x \right) \right)\] then differentiation of \[f\left( g\left( x \right) \right)\] is done in following manner: -
\[f{{\left( g\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right){{g}^{'}}\left( x \right)-(3)\]
Hence,
\[\begin{align}
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)\left( \because \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}2x \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
\end{align}\]
Now, we can write \[\dfrac{dy}{dx}\] as
\[\begin{align}
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{2}}.x}{\sqrt{1+{{x}^{2}}}} \\
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{3}}}{\sqrt{1+{{x}^{2}}}}-(4) \\
\end{align}\]
As we need to find the second derivative of the given function \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] .
Hence, \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]
Therefore, we can write \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] as
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)-(5)\]
Let us calculate \[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\] and \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] one by one.
\[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=2\dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\]
Here, we can observe that \[x\sqrt{1+x{}^{2}}\] is multiplication two functions x and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] . So, here we need to apply multiplication rule of differentiation as stated in equation (2) where
\[u=x,v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\]
Here,
\[\begin{align}
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( x \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\times {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=\dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}}-(6) \\
& \\
\end{align}\]
Now, let us calculate \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] where we can observe that two functions \[{{x}^{3}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\] are in multiplication. So, here we also need to apply multiplication rule of differentiation as stated in equation (2) where
\[\begin{align}
& u={{x}^{3}},v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
& \dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)={{x}^{3}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{x}^{3}} \right)={{x}^{3}}\times \left( \dfrac{-1}{2} \right){{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\left( 3{{x}^{2}} \right)\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
\end{align}\]
Hence we can simply the above expression
\[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)=\dfrac{-{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-(7)\]
Now, put values of equation (6) and (7) in equation (5) in following way: -
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}} \right)-\dfrac{{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}\]
Hence,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}\left( 1+{{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{2}}-{{x}^{4}}+3{{x}^{2}}\left( 1+{{x}^{2}} \right)}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}+2{{x}^{4}}+2+2{{x}^{4}}+4{{x}^{2}}-{{x}^{4}}+3{{x}^{2}}+3{{x}^{4}}}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{6{{x}^{4}}+5{{x}^{2}}+2}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Note:
Calculation is an important task for these kinds of questions otherwise one simple mistake will lead to a fully wrong answer and further calculation.
We can apply \[\left( \dfrac{u}{v} \right)\] rule in place of uv rule and vice-versa is also true by just taking denominator to numerator or numerator to denominator as following way: -
Ex: - If we have \[\dfrac{d}{dx}\left( \sin x.x \right)\] we can write \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( {{x}^{-1}} \right)} \right)\] and can apply \[\left( \dfrac{u}{v} \right)\] rule and let have to calculate \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( 1+{{x}^{2}} \right)} \right)\] then we can write it as \[\sin x{{\left( 1+{{x}^{2}} \right)}^{-1}}\] and apply (u.v) rule. Hence, don’t get confused with (u.v) and \[\left( \dfrac{u}{v} \right)\] rules.
One can go wrong while applying chain rule as stated in equation (3). We need to apply it carefully to get further correct solutions.
Chain Rule: $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$
Multiplication Rule of differentiation: -
$\dfrac{d}{dx}\left( u\left( x \right).v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}$
Complete step by step answer:
We have the function
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] -(1)
Here, we can observe that \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] has two functions \[{{x}^{2}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] in multiplication. So, for the differentiation of function ‘y’ we need to apply multiplication rule of differentiation as stated below: -
If we have two functions u(x) and v(x) in multiplication as
\[y=u\left( x \right)v\left( x \right)\]
Then we can differentiate the above expression in following manner: -
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( u\left( x \right)v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}-(2)\]
Now, coming to the question or equation (1)
We can observe that we have \[u={{x}^{2}}\] and \[v=\sqrt{1+{{x}^{2}}}\] from equation (2)
Hence,
\[\begin{align}
& \dfrac{d}{dx}\left( {{x}^{2}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
& \dfrac{dy}{dx}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}2x+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
Here we have to apply chain rule with \[\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] as stated below: -
If we have an implicit function like two or more function involved as \[f\left( g\left( x \right) \right)\] then differentiation of \[f\left( g\left( x \right) \right)\] is done in following manner: -
\[f{{\left( g\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right){{g}^{'}}\left( x \right)-(3)\]
Hence,
\[\begin{align}
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)\left( \because \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}2x \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
\end{align}\]
Now, we can write \[\dfrac{dy}{dx}\] as
\[\begin{align}
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{2}}.x}{\sqrt{1+{{x}^{2}}}} \\
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{3}}}{\sqrt{1+{{x}^{2}}}}-(4) \\
\end{align}\]
As we need to find the second derivative of the given function \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] .
Hence, \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]
Therefore, we can write \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] as
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)-(5)\]
Let us calculate \[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\] and \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] one by one.
\[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=2\dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\]
Here, we can observe that \[x\sqrt{1+x{}^{2}}\] is multiplication two functions x and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] . So, here we need to apply multiplication rule of differentiation as stated in equation (2) where
\[u=x,v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\]
Here,
\[\begin{align}
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( x \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\times {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=\dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}}-(6) \\
& \\
\end{align}\]
Now, let us calculate \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] where we can observe that two functions \[{{x}^{3}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\] are in multiplication. So, here we also need to apply multiplication rule of differentiation as stated in equation (2) where
\[\begin{align}
& u={{x}^{3}},v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
& \dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)={{x}^{3}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{x}^{3}} \right)={{x}^{3}}\times \left( \dfrac{-1}{2} \right){{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\left( 3{{x}^{2}} \right)\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
\end{align}\]
Hence we can simply the above expression
\[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)=\dfrac{-{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-(7)\]
Now, put values of equation (6) and (7) in equation (5) in following way: -
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}} \right)-\dfrac{{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}\]
Hence,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}\left( 1+{{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{2}}-{{x}^{4}}+3{{x}^{2}}\left( 1+{{x}^{2}} \right)}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}+2{{x}^{4}}+2+2{{x}^{4}}+4{{x}^{2}}-{{x}^{4}}+3{{x}^{2}}+3{{x}^{4}}}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{6{{x}^{4}}+5{{x}^{2}}+2}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Note:
Calculation is an important task for these kinds of questions otherwise one simple mistake will lead to a fully wrong answer and further calculation.
We can apply \[\left( \dfrac{u}{v} \right)\] rule in place of uv rule and vice-versa is also true by just taking denominator to numerator or numerator to denominator as following way: -
Ex: - If we have \[\dfrac{d}{dx}\left( \sin x.x \right)\] we can write \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( {{x}^{-1}} \right)} \right)\] and can apply \[\left( \dfrac{u}{v} \right)\] rule and let have to calculate \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( 1+{{x}^{2}} \right)} \right)\] then we can write it as \[\sin x{{\left( 1+{{x}^{2}} \right)}^{-1}}\] and apply (u.v) rule. Hence, don’t get confused with (u.v) and \[\left( \dfrac{u}{v} \right)\] rules.
One can go wrong while applying chain rule as stated in equation (3). We need to apply it carefully to get further correct solutions.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
