
Find the second derivative of the following function.
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\]
Answer
575.4k+ views
Hint: Apply multiplication of rule of differentiation and take care of chain rule as well whenever required. Both are given as,
Chain Rule: $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$
Multiplication Rule of differentiation: -
$\dfrac{d}{dx}\left( u\left( x \right).v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}$
Complete step by step answer:
We have the function
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] -(1)
Here, we can observe that \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] has two functions \[{{x}^{2}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] in multiplication. So, for the differentiation of function ‘y’ we need to apply multiplication rule of differentiation as stated below: -
If we have two functions u(x) and v(x) in multiplication as
\[y=u\left( x \right)v\left( x \right)\]
Then we can differentiate the above expression in following manner: -
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( u\left( x \right)v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}-(2)\]
Now, coming to the question or equation (1)
We can observe that we have \[u={{x}^{2}}\] and \[v=\sqrt{1+{{x}^{2}}}\] from equation (2)
Hence,
\[\begin{align}
& \dfrac{d}{dx}\left( {{x}^{2}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
& \dfrac{dy}{dx}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}2x+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
Here we have to apply chain rule with \[\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] as stated below: -
If we have an implicit function like two or more function involved as \[f\left( g\left( x \right) \right)\] then differentiation of \[f\left( g\left( x \right) \right)\] is done in following manner: -
\[f{{\left( g\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right){{g}^{'}}\left( x \right)-(3)\]
Hence,
\[\begin{align}
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)\left( \because \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}2x \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
\end{align}\]
Now, we can write \[\dfrac{dy}{dx}\] as
\[\begin{align}
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{2}}.x}{\sqrt{1+{{x}^{2}}}} \\
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{3}}}{\sqrt{1+{{x}^{2}}}}-(4) \\
\end{align}\]
As we need to find the second derivative of the given function \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] .
Hence, \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]
Therefore, we can write \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] as
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)-(5)\]
Let us calculate \[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\] and \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] one by one.
\[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=2\dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\]
Here, we can observe that \[x\sqrt{1+x{}^{2}}\] is multiplication two functions x and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] . So, here we need to apply multiplication rule of differentiation as stated in equation (2) where
\[u=x,v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\]
Here,
\[\begin{align}
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( x \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\times {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=\dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}}-(6) \\
& \\
\end{align}\]
Now, let us calculate \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] where we can observe that two functions \[{{x}^{3}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\] are in multiplication. So, here we also need to apply multiplication rule of differentiation as stated in equation (2) where
\[\begin{align}
& u={{x}^{3}},v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
& \dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)={{x}^{3}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{x}^{3}} \right)={{x}^{3}}\times \left( \dfrac{-1}{2} \right){{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\left( 3{{x}^{2}} \right)\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
\end{align}\]
Hence we can simply the above expression
\[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)=\dfrac{-{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-(7)\]
Now, put values of equation (6) and (7) in equation (5) in following way: -
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}} \right)-\dfrac{{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}\]
Hence,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}\left( 1+{{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{2}}-{{x}^{4}}+3{{x}^{2}}\left( 1+{{x}^{2}} \right)}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}+2{{x}^{4}}+2+2{{x}^{4}}+4{{x}^{2}}-{{x}^{4}}+3{{x}^{2}}+3{{x}^{4}}}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{6{{x}^{4}}+5{{x}^{2}}+2}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Note:
Calculation is an important task for these kinds of questions otherwise one simple mistake will lead to a fully wrong answer and further calculation.
We can apply \[\left( \dfrac{u}{v} \right)\] rule in place of uv rule and vice-versa is also true by just taking denominator to numerator or numerator to denominator as following way: -
Ex: - If we have \[\dfrac{d}{dx}\left( \sin x.x \right)\] we can write \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( {{x}^{-1}} \right)} \right)\] and can apply \[\left( \dfrac{u}{v} \right)\] rule and let have to calculate \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( 1+{{x}^{2}} \right)} \right)\] then we can write it as \[\sin x{{\left( 1+{{x}^{2}} \right)}^{-1}}\] and apply (u.v) rule. Hence, don’t get confused with (u.v) and \[\left( \dfrac{u}{v} \right)\] rules.
One can go wrong while applying chain rule as stated in equation (3). We need to apply it carefully to get further correct solutions.
Chain Rule: $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$
Multiplication Rule of differentiation: -
$\dfrac{d}{dx}\left( u\left( x \right).v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}$
Complete step by step answer:
We have the function
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] -(1)
Here, we can observe that \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] has two functions \[{{x}^{2}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] in multiplication. So, for the differentiation of function ‘y’ we need to apply multiplication rule of differentiation as stated below: -
If we have two functions u(x) and v(x) in multiplication as
\[y=u\left( x \right)v\left( x \right)\]
Then we can differentiate the above expression in following manner: -
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( u\left( x \right)v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}-(2)\]
Now, coming to the question or equation (1)
We can observe that we have \[u={{x}^{2}}\] and \[v=\sqrt{1+{{x}^{2}}}\] from equation (2)
Hence,
\[\begin{align}
& \dfrac{d}{dx}\left( {{x}^{2}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
& \dfrac{dy}{dx}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}2x+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
Here we have to apply chain rule with \[\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] as stated below: -
If we have an implicit function like two or more function involved as \[f\left( g\left( x \right) \right)\] then differentiation of \[f\left( g\left( x \right) \right)\] is done in following manner: -
\[f{{\left( g\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right){{g}^{'}}\left( x \right)-(3)\]
Hence,
\[\begin{align}
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)\left( \because \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}2x \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
\end{align}\]
Now, we can write \[\dfrac{dy}{dx}\] as
\[\begin{align}
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{2}}.x}{\sqrt{1+{{x}^{2}}}} \\
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{3}}}{\sqrt{1+{{x}^{2}}}}-(4) \\
\end{align}\]
As we need to find the second derivative of the given function \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] .
Hence, \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]
Therefore, we can write \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] as
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)-(5)\]
Let us calculate \[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\] and \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] one by one.
\[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=2\dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\]
Here, we can observe that \[x\sqrt{1+x{}^{2}}\] is multiplication two functions x and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] . So, here we need to apply multiplication rule of differentiation as stated in equation (2) where
\[u=x,v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\]
Here,
\[\begin{align}
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( x \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\times {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=\dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}}-(6) \\
& \\
\end{align}\]
Now, let us calculate \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] where we can observe that two functions \[{{x}^{3}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\] are in multiplication. So, here we also need to apply multiplication rule of differentiation as stated in equation (2) where
\[\begin{align}
& u={{x}^{3}},v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
& \dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)={{x}^{3}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{x}^{3}} \right)={{x}^{3}}\times \left( \dfrac{-1}{2} \right){{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\left( 3{{x}^{2}} \right)\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
\end{align}\]
Hence we can simply the above expression
\[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)=\dfrac{-{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-(7)\]
Now, put values of equation (6) and (7) in equation (5) in following way: -
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}} \right)-\dfrac{{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}\]
Hence,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}\left( 1+{{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{2}}-{{x}^{4}}+3{{x}^{2}}\left( 1+{{x}^{2}} \right)}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}+2{{x}^{4}}+2+2{{x}^{4}}+4{{x}^{2}}-{{x}^{4}}+3{{x}^{2}}+3{{x}^{4}}}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{6{{x}^{4}}+5{{x}^{2}}+2}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Note:
Calculation is an important task for these kinds of questions otherwise one simple mistake will lead to a fully wrong answer and further calculation.
We can apply \[\left( \dfrac{u}{v} \right)\] rule in place of uv rule and vice-versa is also true by just taking denominator to numerator or numerator to denominator as following way: -
Ex: - If we have \[\dfrac{d}{dx}\left( \sin x.x \right)\] we can write \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( {{x}^{-1}} \right)} \right)\] and can apply \[\left( \dfrac{u}{v} \right)\] rule and let have to calculate \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( 1+{{x}^{2}} \right)} \right)\] then we can write it as \[\sin x{{\left( 1+{{x}^{2}} \right)}^{-1}}\] and apply (u.v) rule. Hence, don’t get confused with (u.v) and \[\left( \dfrac{u}{v} \right)\] rules.
One can go wrong while applying chain rule as stated in equation (3). We need to apply it carefully to get further correct solutions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

