
Find the second derivative of the following function.
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\]
Answer
589.5k+ views
Hint: Apply multiplication of rule of differentiation and take care of chain rule as well whenever required. Both are given as,
Chain Rule: $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$
Multiplication Rule of differentiation: -
$\dfrac{d}{dx}\left( u\left( x \right).v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}$
Complete step by step answer:
We have the function
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] -(1)
Here, we can observe that \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] has two functions \[{{x}^{2}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] in multiplication. So, for the differentiation of function ‘y’ we need to apply multiplication rule of differentiation as stated below: -
If we have two functions u(x) and v(x) in multiplication as
\[y=u\left( x \right)v\left( x \right)\]
Then we can differentiate the above expression in following manner: -
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( u\left( x \right)v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}-(2)\]
Now, coming to the question or equation (1)
We can observe that we have \[u={{x}^{2}}\] and \[v=\sqrt{1+{{x}^{2}}}\] from equation (2)
Hence,
\[\begin{align}
& \dfrac{d}{dx}\left( {{x}^{2}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
& \dfrac{dy}{dx}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}2x+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
Here we have to apply chain rule with \[\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] as stated below: -
If we have an implicit function like two or more function involved as \[f\left( g\left( x \right) \right)\] then differentiation of \[f\left( g\left( x \right) \right)\] is done in following manner: -
\[f{{\left( g\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right){{g}^{'}}\left( x \right)-(3)\]
Hence,
\[\begin{align}
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)\left( \because \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}2x \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
\end{align}\]
Now, we can write \[\dfrac{dy}{dx}\] as
\[\begin{align}
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{2}}.x}{\sqrt{1+{{x}^{2}}}} \\
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{3}}}{\sqrt{1+{{x}^{2}}}}-(4) \\
\end{align}\]
As we need to find the second derivative of the given function \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] .
Hence, \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]
Therefore, we can write \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] as
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)-(5)\]
Let us calculate \[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\] and \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] one by one.
\[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=2\dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\]
Here, we can observe that \[x\sqrt{1+x{}^{2}}\] is multiplication two functions x and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] . So, here we need to apply multiplication rule of differentiation as stated in equation (2) where
\[u=x,v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\]
Here,
\[\begin{align}
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( x \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\times {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=\dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}}-(6) \\
& \\
\end{align}\]
Now, let us calculate \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] where we can observe that two functions \[{{x}^{3}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\] are in multiplication. So, here we also need to apply multiplication rule of differentiation as stated in equation (2) where
\[\begin{align}
& u={{x}^{3}},v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
& \dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)={{x}^{3}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{x}^{3}} \right)={{x}^{3}}\times \left( \dfrac{-1}{2} \right){{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\left( 3{{x}^{2}} \right)\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
\end{align}\]
Hence we can simply the above expression
\[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)=\dfrac{-{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-(7)\]
Now, put values of equation (6) and (7) in equation (5) in following way: -
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}} \right)-\dfrac{{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}\]
Hence,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}\left( 1+{{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{2}}-{{x}^{4}}+3{{x}^{2}}\left( 1+{{x}^{2}} \right)}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}+2{{x}^{4}}+2+2{{x}^{4}}+4{{x}^{2}}-{{x}^{4}}+3{{x}^{2}}+3{{x}^{4}}}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{6{{x}^{4}}+5{{x}^{2}}+2}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Note:
Calculation is an important task for these kinds of questions otherwise one simple mistake will lead to a fully wrong answer and further calculation.
We can apply \[\left( \dfrac{u}{v} \right)\] rule in place of uv rule and vice-versa is also true by just taking denominator to numerator or numerator to denominator as following way: -
Ex: - If we have \[\dfrac{d}{dx}\left( \sin x.x \right)\] we can write \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( {{x}^{-1}} \right)} \right)\] and can apply \[\left( \dfrac{u}{v} \right)\] rule and let have to calculate \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( 1+{{x}^{2}} \right)} \right)\] then we can write it as \[\sin x{{\left( 1+{{x}^{2}} \right)}^{-1}}\] and apply (u.v) rule. Hence, don’t get confused with (u.v) and \[\left( \dfrac{u}{v} \right)\] rules.
One can go wrong while applying chain rule as stated in equation (3). We need to apply it carefully to get further correct solutions.
Chain Rule: $\left( f\left( g\left( x \right) \right) \right)'=f'\left( g\left( x \right) \right).g'\left( x \right)$
Multiplication Rule of differentiation: -
$\dfrac{d}{dx}\left( u\left( x \right).v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}$
Complete step by step answer:
We have the function
\[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] -(1)
Here, we can observe that \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] has two functions \[{{x}^{2}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] in multiplication. So, for the differentiation of function ‘y’ we need to apply multiplication rule of differentiation as stated below: -
If we have two functions u(x) and v(x) in multiplication as
\[y=u\left( x \right)v\left( x \right)\]
Then we can differentiate the above expression in following manner: -
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( u\left( x \right)v\left( x \right) \right)=u\left( x \right)\dfrac{dv\left( x \right)}{dx}+v\left( x \right)\dfrac{du\left( x \right)}{dx}-(2)\]
Now, coming to the question or equation (1)
We can observe that we have \[u={{x}^{2}}\] and \[v=\sqrt{1+{{x}^{2}}}\] from equation (2)
Hence,
\[\begin{align}
& \dfrac{d}{dx}\left( {{x}^{2}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
& \dfrac{dy}{dx}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}2x+{{x}^{2}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
Here we have to apply chain rule with \[\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] as stated below: -
If we have an implicit function like two or more function involved as \[f\left( g\left( x \right) \right)\] then differentiation of \[f\left( g\left( x \right) \right)\] is done in following manner: -
\[f{{\left( g\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right){{g}^{'}}\left( x \right)-(3)\]
Hence,
\[\begin{align}
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)\left( \because \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}2x \\
& \dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}=x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
\end{align}\]
Now, we can write \[\dfrac{dy}{dx}\] as
\[\begin{align}
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{2}}.x}{\sqrt{1+{{x}^{2}}}} \\
& \dfrac{dy}{dx}=2x\sqrt{1+{{x}^{2}}}+\dfrac{{{x}^{3}}}{\sqrt{1+{{x}^{2}}}}-(4) \\
\end{align}\]
As we need to find the second derivative of the given function \[y={{x}^{2}}\sqrt{1+{{x}^{2}}}\] .
Hence, \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]
Therefore, we can write \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] as
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)-(5)\]
Let us calculate \[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\] and \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] one by one.
\[\dfrac{d}{dx}\left( 2x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=2\dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)\]
Here, we can observe that \[x\sqrt{1+x{}^{2}}\] is multiplication two functions x and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\] . So, here we need to apply multiplication rule of differentiation as stated in equation (2) where
\[u=x,v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\]
Here,
\[\begin{align}
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\dfrac{d}{dx}\left( x \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=x\times {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
& \dfrac{d}{dx}\left( x{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)=\dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}}-(6) \\
& \\
\end{align}\]
Now, let us calculate \[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\] where we can observe that two functions \[{{x}^{3}}\] and \[{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\] are in multiplication. So, here we also need to apply multiplication rule of differentiation as stated in equation (2) where
\[\begin{align}
& u={{x}^{3}},v={{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \\
& \dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)={{x}^{3}}\dfrac{d}{dx}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{x}^{3}} \right)={{x}^{3}}\times \left( \dfrac{-1}{2} \right){{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}-1}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}}\left( 3{{x}^{2}} \right)\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
\end{align}\]
Hence we can simply the above expression
\[\dfrac{d}{dx}\left( {{x}^{3}}{{\left( 1+{{x}^{2}} \right)}^{\dfrac{-1}{2}}} \right)=\dfrac{-{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-(7)\]
Now, put values of equation (6) and (7) in equation (5) in following way: -
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{{{x}^{2}}}{\sqrt{1+{{x}^{2}}}}+\sqrt{1+{{x}^{2}}} \right)-\dfrac{{{x}^{4}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{3}{2}}}}+\dfrac{3{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}\]
Hence,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}\left( 1+{{x}^{2}} \right)+{{\left( 1+{{x}^{2}} \right)}^{2}}-{{x}^{4}}+3{{x}^{2}}\left( 1+{{x}^{2}} \right)}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{x}^{2}}+2{{x}^{4}}+2+2{{x}^{4}}+4{{x}^{2}}-{{x}^{4}}+3{{x}^{2}}+3{{x}^{4}}}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{6{{x}^{4}}+5{{x}^{2}}+2}{\left( 1+{{x}^{2}} \right)\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Note:
Calculation is an important task for these kinds of questions otherwise one simple mistake will lead to a fully wrong answer and further calculation.
We can apply \[\left( \dfrac{u}{v} \right)\] rule in place of uv rule and vice-versa is also true by just taking denominator to numerator or numerator to denominator as following way: -
Ex: - If we have \[\dfrac{d}{dx}\left( \sin x.x \right)\] we can write \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( {{x}^{-1}} \right)} \right)\] and can apply \[\left( \dfrac{u}{v} \right)\] rule and let have to calculate \[\dfrac{d}{dx}\left( \dfrac{\sin x}{\left( 1+{{x}^{2}} \right)} \right)\] then we can write it as \[\sin x{{\left( 1+{{x}^{2}} \right)}^{-1}}\] and apply (u.v) rule. Hence, don’t get confused with (u.v) and \[\left( \dfrac{u}{v} \right)\] rules.
One can go wrong while applying chain rule as stated in equation (3). We need to apply it carefully to get further correct solutions.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

