
Find the second derivative of the following function.
\[y=\arcsin (\ln x)\]
Answer
589.5k+ views
Hint: Here ‘arc’ is used for representing the inverse form of any trigonometric function. So, $\arcsin \left( \ln x \right)={{\sin }^{-1}}\left( \ln x \right)$. Apply chain rule for differentiating the given function which is given as $f\left( g\left( x \right) \right)'=f'\left( g\left( x \right) \right)g'\left( x \right)$.
Use $\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$and $\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}$to simplify it further.
Complete step by step answer:
Here, we have given equation
\[y=\arcsin (\ln x)\]
Or \[y={{\sin }^{-1}}\left( \ln x \right)-(1)\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{\sin }^{-1}}\left( \ln x \right) \right) \\
& \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{\left( \ln x \right)}^{2}}}}\dfrac{d}{dx}\left( \ln x \right)\left( \because \dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}} \right) \\
& \dfrac{dy}{dx}=\dfrac{1}{x\sqrt{1-{{\left( \ln x \right)}^{2}}}}\left( \because \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} \right) \\
\end{align}\]
Now, we have \[\dfrac{dy}{dx}\]as
\[\dfrac{dy}{dx}=\dfrac{1}{x\sqrt{1-{{\left( \ln x \right)}^{2}}}}-(2)\]
Now, we have to find the derivative of equation (2) as we need to calculate the second derivative of given function y.
Hence, we can write the equation (2) as
\[\dfrac{dy}{dx}={{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\]
Now, let us differentiate \[\dfrac{dy}{dx}\]again: -
\[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( {{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}} \right)-(3)\]
Now, from the equation (3) we can observe that there are two functions in multiplication, \[{{x}^{-1}}\]and \[{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\].
Hence, here we need to apply multiplication rule of differentiation in a following way: -
Let us assume two functions u(x) and v(x) so that they are in multiplication form as follows: -
\[\dfrac{d}{dx}\left( u\left( x \right).v\left( x \right) \right)=u\left( x \right)\dfrac{d}{dx}\left( v\left( x \right) \right)+v\left( x \right)\dfrac{d}{dx}\left( u\left( x \right) \right)-(4)\]
Applying multiplication rule of differentiation in equation (3) as stated in equation (4) as follows: -
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( {{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]
Here, from the equation (4)
\[u={{x}^{-1}},v={{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\]
Therefore, we can write \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]as
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{x}^{-1}}\dfrac{d}{dx}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}+{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{x}^{-1}} \right)\]
As we can see that we need to apply chain rule as well wherever necessary because \[{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\]is implicit function as stated in the beginning of solution. Let us simply \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]more: -
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{x}^{-1}}\times \left( \dfrac{-1}{2} \right){{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}-1}}.\dfrac{d}{dx}\left( 1-{{\left( \ln x \right)}^{2}} \right)+{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\times \left( -1 \right){{x}^{-2}}\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2x}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-3}{2}}}\left( -2\ln x\times \dfrac{d}{dx}\left( \ln x \right) \right)-\dfrac{{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}}{{{x}^{2}}}\left( \because \dfrac{d}{dx}\ln x=\dfrac{1}{x} \right) \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-3}{2}}}\ln x}{2{{x}^{2}}}-\dfrac{{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}}{{{x}^{2}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\ln x{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-3}{2}}}-{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}}{{{x}^{2}}} \\
\end{align}\]
Or
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\ln x}{{{x}^{2}}\left( 1-{{\left( \ln x \right)}^{2}} \right)\sqrt{1-{{\left( \ln x \right)}^{2}}}}-\dfrac{1}{{{x}^{2}}\sqrt{1-{{\left( \ln x \right)}^{2}}}}\]
Note:
One needs to be careful while applying chain rule and multiplication rule of differentiation. While applying chain one needs to differentiate all the functions involved.
Students can also apply \[\left( \dfrac{u}{v} \right)\]rule of differentiation while differentiating \[\dfrac{d}{dx}\left( {{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]as following way: -
Let us assume two functions u(x) and v(x); Now let us differentiate \[y=\dfrac{u\left( x \right)}{v\left( x \right)}\]
\[\dfrac{dy}{dx}=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Now, coming to \[\dfrac{d}{dx}\left( {{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]we can write the above expression as \[\dfrac{d}{dx}\left( \dfrac{{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}}{x} \right)\]and we can take \[u={{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\]and \[v=x\] apply division rule \[\left( \dfrac{u}{v} \right)\]as stated above and get the same answer.
Use $\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$and $\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}$to simplify it further.
Complete step by step answer:
Here, we have given equation
\[y=\arcsin (\ln x)\]
Or \[y={{\sin }^{-1}}\left( \ln x \right)-(1)\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{\sin }^{-1}}\left( \ln x \right) \right) \\
& \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{\left( \ln x \right)}^{2}}}}\dfrac{d}{dx}\left( \ln x \right)\left( \because \dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}} \right) \\
& \dfrac{dy}{dx}=\dfrac{1}{x\sqrt{1-{{\left( \ln x \right)}^{2}}}}\left( \because \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} \right) \\
\end{align}\]
Now, we have \[\dfrac{dy}{dx}\]as
\[\dfrac{dy}{dx}=\dfrac{1}{x\sqrt{1-{{\left( \ln x \right)}^{2}}}}-(2)\]
Now, we have to find the derivative of equation (2) as we need to calculate the second derivative of given function y.
Hence, we can write the equation (2) as
\[\dfrac{dy}{dx}={{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\]
Now, let us differentiate \[\dfrac{dy}{dx}\]again: -
\[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( {{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}} \right)-(3)\]
Now, from the equation (3) we can observe that there are two functions in multiplication, \[{{x}^{-1}}\]and \[{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\].
Hence, here we need to apply multiplication rule of differentiation in a following way: -
Let us assume two functions u(x) and v(x) so that they are in multiplication form as follows: -
\[\dfrac{d}{dx}\left( u\left( x \right).v\left( x \right) \right)=u\left( x \right)\dfrac{d}{dx}\left( v\left( x \right) \right)+v\left( x \right)\dfrac{d}{dx}\left( u\left( x \right) \right)-(4)\]
Applying multiplication rule of differentiation in equation (3) as stated in equation (4) as follows: -
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( {{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]
Here, from the equation (4)
\[u={{x}^{-1}},v={{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\]
Therefore, we can write \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]as
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{x}^{-1}}\dfrac{d}{dx}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}+{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{x}^{-1}} \right)\]
As we can see that we need to apply chain rule as well wherever necessary because \[{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\]is implicit function as stated in the beginning of solution. Let us simply \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]more: -
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{x}^{-1}}\times \left( \dfrac{-1}{2} \right){{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}-1}}.\dfrac{d}{dx}\left( 1-{{\left( \ln x \right)}^{2}} \right)+{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\times \left( -1 \right){{x}^{-2}}\left( \because \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right) \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2x}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-3}{2}}}\left( -2\ln x\times \dfrac{d}{dx}\left( \ln x \right) \right)-\dfrac{{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}}{{{x}^{2}}}\left( \because \dfrac{d}{dx}\ln x=\dfrac{1}{x} \right) \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-3}{2}}}\ln x}{2{{x}^{2}}}-\dfrac{{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}}{{{x}^{2}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\ln x{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-3}{2}}}-{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}}{{{x}^{2}}} \\
\end{align}\]
Or
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\ln x}{{{x}^{2}}\left( 1-{{\left( \ln x \right)}^{2}} \right)\sqrt{1-{{\left( \ln x \right)}^{2}}}}-\dfrac{1}{{{x}^{2}}\sqrt{1-{{\left( \ln x \right)}^{2}}}}\]
Note:
One needs to be careful while applying chain rule and multiplication rule of differentiation. While applying chain one needs to differentiate all the functions involved.
Students can also apply \[\left( \dfrac{u}{v} \right)\]rule of differentiation while differentiating \[\dfrac{d}{dx}\left( {{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]as following way: -
Let us assume two functions u(x) and v(x); Now let us differentiate \[y=\dfrac{u\left( x \right)}{v\left( x \right)}\]
\[\dfrac{dy}{dx}=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Now, coming to \[\dfrac{d}{dx}\left( {{x}^{-1}}{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}} \right)\]we can write the above expression as \[\dfrac{d}{dx}\left( \dfrac{{{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}}{x} \right)\]and we can take \[u={{\left( 1-{{\left( \ln x \right)}^{2}} \right)}^{\dfrac{-1}{2}}}\]and \[v=x\] apply division rule \[\left( \dfrac{u}{v} \right)\]as stated above and get the same answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

10 examples of friction in our daily life

