
Find the second derivative of function \[\log x\].
Answer
597k+ views
Hint: To find the derivative of a function we should know what the first principle of the derivative is and how to apply it. First principle of derivative states that, \[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{x+h-x}\]. For \[\log x\], keep in mind that you will require the expansion of \[\log \left( 1+x \right)\] which is \[\log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.....\].With help of these concepts we try to solve the question.
Complete step by step answer:
In this question, we have to find the second derivative of \[\log x\], for that, we should know what is the first derivative of the function \[\log x\]. To find that, we will apply first principle of derivatives, which states that, \[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{x+h-x}\].
We have been given that \[f\left( x \right)=\log x\], which means,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( x+h \right)-\log \left( x \right)}{x+h-x}......\left( i \right)\]
We know that, \[\log a-\log b=\log \left( \dfrac{a}{b} \right)\]. Therefore, we can write equation (i) can be written as,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( \dfrac{x+h}{x} \right)}{x+h-x}\], which can be written as
\[\Rightarrow {{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+\dfrac{h}{x} \right)}{x+h-x}......\left( ii \right)\]
As we know the expansion of \[\log \left( 1+x \right)\], which is \[\log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.....\], we are using this value in equation (ii), we will get,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \dfrac{h}{x} \right)-\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{4}}}{4}+.....}{x+h-x}\]
Now, we will take \[\left( \dfrac{h}{x} \right)\] common from numerator, so we will get,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{h}{x} \right)\dfrac{1-\dfrac{{{\left( \dfrac{h}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{4}+.....}{h}\]
In this, we can see that ‘h’ can be cancelled out from numerator and denominator, so we will get,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\dfrac{{{\left( \dfrac{h}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{4}+.....}{x}\]
Now, we are putting the limits, so we will get,
\[{{f}^{'}}\left( x \right)=\dfrac{1-\dfrac{{{\left( \dfrac{0}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{0}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{0}{x} \right)}^{3}}}{4}+.....}{x}\]
\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1-0}{x}\]
\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{x}\]
Now, we can say that the first derivative of \[\log x\] is \[\dfrac{1}{x}\].
Now, to find the second derivative, we will apply the first principle of derivatives on \[\dfrac{1}{x}\], as it is the first derivative of \[\log x\].
Let us consider, \[g\left( x \right)=\dfrac{1}{x}\]. Therefore, we can say that, \[{{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{x+h}-\dfrac{1}{x}}{x+h-x}\]
Now, we will simplify above equation further, so we get,
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{x+h}-\dfrac{1}{x}}{h}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x-x-h}{\left( x+h \right)\left( x \right)}}{h}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-h}{\left( x+h \right)\left( x \right)}}{h}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-h}{h\left( x+h \right)\left( x \right)}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{\left( x+h \right)\left( x \right)}\]
Now, we are putting limits, so we get,
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{\left( x+0 \right)\left( x \right)}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{-1}{\left( x \right)\left( x \right)}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{-1}{{{\left( x \right)}^{2}}}\]
\[\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{-1}{{{\left( x \right)}^{2}}}\]
Therefore, we can say that the second derivative of \[\log x\] is \[\dfrac{-1}{{{\left( x \right)}^{2}}}\].
Note: In this question, the most important thing to remember is the expansion of \[\log \left( 1+x \right)\], which is \[\log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.....\], because if we will not apply this expansion our first derivative will become zero and so as second derivative which is wrong. Also, we can use a shortcut method for finding the second derivative of \[\log x\], that is, by remembering its first derivative, which is, \[\dfrac{1}{x}\]. Now, we can write this as \[{{x}^{-1}}\]and apply the formula of derivative of \[{{x}^{n}}\], which is equal to \[n{{x}^{n-1}}\]. Therefore, we can write, \[\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=-{{x}^{-2}}\], which is as same as \[\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( \log x \right)=-{{x}^{-2}}\].
Complete step by step answer:
In this question, we have to find the second derivative of \[\log x\], for that, we should know what is the first derivative of the function \[\log x\]. To find that, we will apply first principle of derivatives, which states that, \[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{x+h-x}\].
We have been given that \[f\left( x \right)=\log x\], which means,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( x+h \right)-\log \left( x \right)}{x+h-x}......\left( i \right)\]
We know that, \[\log a-\log b=\log \left( \dfrac{a}{b} \right)\]. Therefore, we can write equation (i) can be written as,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( \dfrac{x+h}{x} \right)}{x+h-x}\], which can be written as
\[\Rightarrow {{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+\dfrac{h}{x} \right)}{x+h-x}......\left( ii \right)\]
As we know the expansion of \[\log \left( 1+x \right)\], which is \[\log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.....\], we are using this value in equation (ii), we will get,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \dfrac{h}{x} \right)-\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{4}}}{4}+.....}{x+h-x}\]
Now, we will take \[\left( \dfrac{h}{x} \right)\] common from numerator, so we will get,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{h}{x} \right)\dfrac{1-\dfrac{{{\left( \dfrac{h}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{4}+.....}{h}\]
In this, we can see that ‘h’ can be cancelled out from numerator and denominator, so we will get,
\[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\dfrac{{{\left( \dfrac{h}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{4}+.....}{x}\]
Now, we are putting the limits, so we will get,
\[{{f}^{'}}\left( x \right)=\dfrac{1-\dfrac{{{\left( \dfrac{0}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{0}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{0}{x} \right)}^{3}}}{4}+.....}{x}\]
\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1-0}{x}\]
\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{x}\]
Now, we can say that the first derivative of \[\log x\] is \[\dfrac{1}{x}\].
Now, to find the second derivative, we will apply the first principle of derivatives on \[\dfrac{1}{x}\], as it is the first derivative of \[\log x\].
Let us consider, \[g\left( x \right)=\dfrac{1}{x}\]. Therefore, we can say that, \[{{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{x+h}-\dfrac{1}{x}}{x+h-x}\]
Now, we will simplify above equation further, so we get,
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{x+h}-\dfrac{1}{x}}{h}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x-x-h}{\left( x+h \right)\left( x \right)}}{h}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-h}{\left( x+h \right)\left( x \right)}}{h}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-h}{h\left( x+h \right)\left( x \right)}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{\left( x+h \right)\left( x \right)}\]
Now, we are putting limits, so we get,
\[\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{\left( x+0 \right)\left( x \right)}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{-1}{\left( x \right)\left( x \right)}\]
\[\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{-1}{{{\left( x \right)}^{2}}}\]
\[\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{-1}{{{\left( x \right)}^{2}}}\]
Therefore, we can say that the second derivative of \[\log x\] is \[\dfrac{-1}{{{\left( x \right)}^{2}}}\].
Note: In this question, the most important thing to remember is the expansion of \[\log \left( 1+x \right)\], which is \[\log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.....\], because if we will not apply this expansion our first derivative will become zero and so as second derivative which is wrong. Also, we can use a shortcut method for finding the second derivative of \[\log x\], that is, by remembering its first derivative, which is, \[\dfrac{1}{x}\]. Now, we can write this as \[{{x}^{-1}}\]and apply the formula of derivative of \[{{x}^{n}}\], which is equal to \[n{{x}^{n-1}}\]. Therefore, we can write, \[\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=-{{x}^{-2}}\], which is as same as \[\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( \log x \right)=-{{x}^{-2}}\].
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

