
How do you find the roots of ${x^2} + x = 56$?
Answer
536.4k+ views
Hint: We will use the method of splitting of the middle term and then split our middle term according to the other terms and then find factors and thus solve it to find roots.
Complete step-by-step answer:
We are given that we are required to solve ${x^2} + x = 56$.
If we bring 56 from addition in the right hand side to subtraction in the left hand side, we get:
We can write this equation as ${x^2} + x - 56 = 0$.
Now, we can write the above equation as following:-
$ \Rightarrow {x^2} + 8x - 7x - 56 = 0$
Now, we can club two terms together to obtain the following:-
$ \Rightarrow \left( {{x^2} + 8x} \right) + \left( { - 7x - 56} \right) = 0$
Now, we will get x common from the first bracket and – 7 from the next bracket in the above expression to get the following expression:-
$ \Rightarrow x\left( {x + 8} \right) - 7\left( {x + 8} \right) = 0$
Now if we take x + 8 common from both the terms, we will then obtain the following equation:-
$ \Rightarrow \left( {x + 8} \right)\left( {x - 7} \right) = 0$
Hence, we get either x = - 8 or x = 7.
Hence, the roots are -8 and -7.
Note:
The students must note that after the step $\left( {x + 8} \right)\left( {x - 7} \right) = 0$, we directly got the roots due to a concept which can be stated as follows:-
If a.b = 0, then either a = 0 or b = 0.
We just replaced a by (x + 8) and b by (x – 7).
There is an alternate way to do the same, which can be done as following:-
If you have an equation $a{x^2} + bx + c = 0$, then the roots of the equation are given by:-
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$, where $D = {b^2} - 4ac$
If we compare this to the given equation, we have a = 1, b = 1 and c = -56
So, we get: $D = 1 - 4 \times ( - 56)$
If we solve it, we will get: D = 225
Now, let us find the roots:-
$ \Rightarrow x = \dfrac{{ - 1 \pm \sqrt {225} }}{2}$
Solving the square – root, we will then obtain the following:-
$ \Rightarrow x = \dfrac{{ - 1 \pm 15}}{2}$
Thus, we have x = 7 or – 8.
Complete step-by-step answer:
We are given that we are required to solve ${x^2} + x = 56$.
If we bring 56 from addition in the right hand side to subtraction in the left hand side, we get:
We can write this equation as ${x^2} + x - 56 = 0$.
Now, we can write the above equation as following:-
$ \Rightarrow {x^2} + 8x - 7x - 56 = 0$
Now, we can club two terms together to obtain the following:-
$ \Rightarrow \left( {{x^2} + 8x} \right) + \left( { - 7x - 56} \right) = 0$
Now, we will get x common from the first bracket and – 7 from the next bracket in the above expression to get the following expression:-
$ \Rightarrow x\left( {x + 8} \right) - 7\left( {x + 8} \right) = 0$
Now if we take x + 8 common from both the terms, we will then obtain the following equation:-
$ \Rightarrow \left( {x + 8} \right)\left( {x - 7} \right) = 0$
Hence, we get either x = - 8 or x = 7.
Hence, the roots are -8 and -7.
Note:
The students must note that after the step $\left( {x + 8} \right)\left( {x - 7} \right) = 0$, we directly got the roots due to a concept which can be stated as follows:-
If a.b = 0, then either a = 0 or b = 0.
We just replaced a by (x + 8) and b by (x – 7).
There is an alternate way to do the same, which can be done as following:-
If you have an equation $a{x^2} + bx + c = 0$, then the roots of the equation are given by:-
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$, where $D = {b^2} - 4ac$
If we compare this to the given equation, we have a = 1, b = 1 and c = -56
So, we get: $D = 1 - 4 \times ( - 56)$
If we solve it, we will get: D = 225
Now, let us find the roots:-
$ \Rightarrow x = \dfrac{{ - 1 \pm \sqrt {225} }}{2}$
Solving the square – root, we will then obtain the following:-
$ \Rightarrow x = \dfrac{{ - 1 \pm 15}}{2}$
Thus, we have x = 7 or – 8.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

