
Find the roots of the quadratic equation $\dfrac{x-2}{x-3}+\dfrac{x-4}{x-5}=\dfrac{10}{3}$, where $x\ne 3,5$.
Answer
579.9k+ views
Hint: We start solving the problem by adding the two fractions containing the terms of x into a single fraction by taking the LCM. We then multiply the terms present on both sides (i.e., multiplying the numerator of L.H.S with the denominator of R.H.S and numerator of R.H.S with the denominator of L.H.S). We then factorize the obtained resultant quadratic equation to get the required values of the roots of the quadratic equation.
Complete step by step answer:
According to the problem, we need to find the roots of the quadratic equation $\dfrac{x-2}{x-3}+\dfrac{x-4}{x-5}=\dfrac{10}{3}$, where $x\ne 3,5$.
Let us convert the given quadratic equation $\dfrac{x-2}{x-3}+\dfrac{x-4}{x-5}=\dfrac{10}{3}$, where $x\ne 3,5$ into its simpler form.
$\Rightarrow \dfrac{\left( x-2 \right)\left( x-5 \right)+\left( x-3 \right)\left( x-4 \right)}{\left( x-3 \right)\left( x-5 \right)}=\dfrac{10}{3}$.
$\Rightarrow \dfrac{{{x}^{2}}-7x+10+{{x}^{2}}-7x+12}{{{x}^{2}}-8x+15}=\dfrac{10}{3}$.
$\Rightarrow \dfrac{2{{x}^{2}}-14x+22}{{{x}^{2}}-8x+15}=\dfrac{10}{3}$.
Dividing by 2 on both sides, we get
$\Rightarrow \dfrac{{{x}^{2}}-7x+11}{{{x}^{2}}-8x+15}=\dfrac{5}{3}$.
Let us cross multiply the terms present on both sides.
$\Rightarrow 3\times \left( {{x}^{2}}-7x+11 \right)=5\times \left( {{x}^{2}}-8x+15 \right)$.
$\Rightarrow 3{{x}^{2}}-21x+33=5{{x}^{2}}-40x+75$.
$\Rightarrow 2{{x}^{2}}-19x+42=0$.
Let us factorize the obtained quadratic equation.
$\Rightarrow 2{{x}^{2}}-12x-7x+42=0$.
$\Rightarrow 2x\left( x-6 \right)-7\left( x-6 \right)=0$.
$\Rightarrow \left( 2x-7 \right)\left( x-6 \right)=0$.
$\Rightarrow \left( 2x-7 \right)=0$ or $\left( x-6 \right)=0$.
$\Rightarrow 2x=7$ or $x=6$.
$\Rightarrow x=\dfrac{7}{2}$ or $x=6$.
So, we found the roots of the given quadratic equation as $\dfrac{7}{2}$ and 6.
∴ The roots of the quadratic equation $\dfrac{x-2}{x-3}+\dfrac{x-4}{x-5}=\dfrac{10}{3}$, where $x\ne 3,5$ are $\dfrac{7}{2}$ and 6.
Note: Whenever we get this type of problem containing quadratic equations involved with fractions of the independent variable, we first need to convert it to the simpler form and check the domain of it. We can also solve the resultant quadratic equation $2{{x}^{2}}-19x+42=0$ by using the facts that roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ is$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
i.e., the roots of quadratic equation $2{{x}^{2}}-19x+42=0$ are $\dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{19\pm \sqrt{361-336}}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{19\pm \sqrt{25}}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{19\pm 5}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{19+5}{4},\dfrac{19-5}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{24}{4},\dfrac{14}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=6,\dfrac{7}{2}$, which are the required roots of the given quadratic equation.
Complete step by step answer:
According to the problem, we need to find the roots of the quadratic equation $\dfrac{x-2}{x-3}+\dfrac{x-4}{x-5}=\dfrac{10}{3}$, where $x\ne 3,5$.
Let us convert the given quadratic equation $\dfrac{x-2}{x-3}+\dfrac{x-4}{x-5}=\dfrac{10}{3}$, where $x\ne 3,5$ into its simpler form.
$\Rightarrow \dfrac{\left( x-2 \right)\left( x-5 \right)+\left( x-3 \right)\left( x-4 \right)}{\left( x-3 \right)\left( x-5 \right)}=\dfrac{10}{3}$.
$\Rightarrow \dfrac{{{x}^{2}}-7x+10+{{x}^{2}}-7x+12}{{{x}^{2}}-8x+15}=\dfrac{10}{3}$.
$\Rightarrow \dfrac{2{{x}^{2}}-14x+22}{{{x}^{2}}-8x+15}=\dfrac{10}{3}$.
Dividing by 2 on both sides, we get
$\Rightarrow \dfrac{{{x}^{2}}-7x+11}{{{x}^{2}}-8x+15}=\dfrac{5}{3}$.
Let us cross multiply the terms present on both sides.
$\Rightarrow 3\times \left( {{x}^{2}}-7x+11 \right)=5\times \left( {{x}^{2}}-8x+15 \right)$.
$\Rightarrow 3{{x}^{2}}-21x+33=5{{x}^{2}}-40x+75$.
$\Rightarrow 2{{x}^{2}}-19x+42=0$.
Let us factorize the obtained quadratic equation.
$\Rightarrow 2{{x}^{2}}-12x-7x+42=0$.
$\Rightarrow 2x\left( x-6 \right)-7\left( x-6 \right)=0$.
$\Rightarrow \left( 2x-7 \right)\left( x-6 \right)=0$.
$\Rightarrow \left( 2x-7 \right)=0$ or $\left( x-6 \right)=0$.
$\Rightarrow 2x=7$ or $x=6$.
$\Rightarrow x=\dfrac{7}{2}$ or $x=6$.
So, we found the roots of the given quadratic equation as $\dfrac{7}{2}$ and 6.
∴ The roots of the quadratic equation $\dfrac{x-2}{x-3}+\dfrac{x-4}{x-5}=\dfrac{10}{3}$, where $x\ne 3,5$ are $\dfrac{7}{2}$ and 6.
Note: Whenever we get this type of problem containing quadratic equations involved with fractions of the independent variable, we first need to convert it to the simpler form and check the domain of it. We can also solve the resultant quadratic equation $2{{x}^{2}}-19x+42=0$ by using the facts that roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ is$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
i.e., the roots of quadratic equation $2{{x}^{2}}-19x+42=0$ are $\dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{19\pm \sqrt{361-336}}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{19\pm \sqrt{25}}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{19\pm 5}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{19+5}{4},\dfrac{19-5}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=\dfrac{24}{4},\dfrac{14}{4}$.
$\Rightarrow \dfrac{-\left( -19 \right)\pm \sqrt{{{\left( -19 \right)}^{2}}-4\left( 2 \right)\left( 42 \right)}}{2\left( 2 \right)}=6,\dfrac{7}{2}$, which are the required roots of the given quadratic equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

