
Find the remainder when \[{x^3} + 3{x^3} + 3x + 1\]is divided by \[x\].
Answer
581.4k+ views
Hint: Polynomials: - A polynomial is an expression consisting of variable and efficiency that involves only the operations of addition, subtraction, multiplication, etc.
General forms of a polynomial \[ = a{x^2} + bx + c\]
A polynomial is denoted as \[p(x)\,or\,g(x)\]
A polynomial is always divided by another polynomial but with a lesser degree. By degree we mean the higher power of the variable in the respective polynomial i.e if \[p(x)\,\] is divided by some \[g(x)\] through long division then
Degree of \[g(x)\]Therefore,
Complete step by step answer:
Given \[{x^3} + 3{x^2} + 3x + 1\] is divided by \[x\] i.e. let \[p(x) = {x^3} + 3{x^2} + 3x + 1.......(1)\] and \[g(x) = x\]
As we see that degree of \[g(x)\]i.e. I and degree of \[p(x)\] i.e. 3
\[ \Rightarrow \]degree of \[g(x) < \]degree of \[p(x)\]
Step1:- Make sure the polynomial is written is decreasing order. If any term is missing, use a zero to fill its place.
We have \[p(x) = {x^3} + 3{x^2} + 3x + 1\,and\,g(x) = x\]
Applying long division
\[x\sqrt {{x^3} + 3{x^2} + 3x + 1} ({x^2} + 3x + 3)\]
Step 2:- Dividing the \[g(x)\] with the highest power i.e \[x\] by \[{x^3}\] we get \[{x^2}\] we known \[x:{x^2} = {x^3}\]
Step 3:- Subtraitingit and bringing down the other terms.
Step 4: - Now to get \[3{x^2},x\] must be multiplied with \[3x\]. Hence by subtracting it we are left only with \[3x + 1\]
Step 5: - To get \[3x,x\] must be multiplied by 3, and by subtracting it we are left with 1 only.
Step 6: - We see that now, 1 is a constant and Hence out the remainder.
Therefore, we get 1 as a remainder on dividing \[{x^3} + 3{x^2} + 3x + 1\]by \[x\].
Note: we can solve this question with the help of remainder theorem as well when degree of polynomial \[g(x) < \]degree of \[p(x)\]
Remainder theorem:
If a polynomial \[p(x)\] is divided by \[x - a,\] the remainder is \[p(a)\]
Here as \[{x^3} + 3{x^2} + 3x + 1\]is divided by \[x\] or \[x + o\]
\[ \Rightarrow put\,x = 0\]in (1)
\[ \Rightarrow {(0)^3} + 3{(0)^2} + 3(0) + 1\]
\[\begin{gathered}
\Rightarrow 0 + 0 + 0 + 1 \\
\Rightarrow 1 \\
\end{gathered} \]
Hence the remainder is 1
General forms of a polynomial \[ = a{x^2} + bx + c\]
A polynomial is denoted as \[p(x)\,or\,g(x)\]
A polynomial is always divided by another polynomial but with a lesser degree. By degree we mean the higher power of the variable in the respective polynomial i.e if \[p(x)\,\] is divided by some \[g(x)\] through long division then
Degree of \[g(x)\]
Complete step by step answer:
Given \[{x^3} + 3{x^2} + 3x + 1\] is divided by \[x\] i.e. let \[p(x) = {x^3} + 3{x^2} + 3x + 1.......(1)\] and \[g(x) = x\]
As we see that degree of \[g(x)\]i.e. I and degree of \[p(x)\] i.e. 3
\[ \Rightarrow \]degree of \[g(x) < \]degree of \[p(x)\]
Step1:- Make sure the polynomial is written is decreasing order. If any term is missing, use a zero to fill its place.
We have \[p(x) = {x^3} + 3{x^2} + 3x + 1\,and\,g(x) = x\]
Applying long division
\[x\sqrt {{x^3} + 3{x^2} + 3x + 1} ({x^2} + 3x + 3)\]
Step 2:- Dividing the \[g(x)\] with the highest power i.e \[x\] by \[{x^3}\] we get \[{x^2}\] we known \[x:{x^2} = {x^3}\]
Step 3:- Subtraitingit and bringing down the other terms.
Step 4: - Now to get \[3{x^2},x\] must be multiplied with \[3x\]. Hence by subtracting it we are left only with \[3x + 1\]
Step 5: - To get \[3x,x\] must be multiplied by 3, and by subtracting it we are left with 1 only.
Step 6: - We see that now, 1 is a constant and Hence out the remainder.
Therefore, we get 1 as a remainder on dividing \[{x^3} + 3{x^2} + 3x + 1\]by \[x\].
Note: we can solve this question with the help of remainder theorem as well when degree of polynomial \[g(x) < \]degree of \[p(x)\]
Remainder theorem:
If a polynomial \[p(x)\] is divided by \[x - a,\] the remainder is \[p(a)\]
Here as \[{x^3} + 3{x^2} + 3x + 1\]is divided by \[x\] or \[x + o\]
\[ \Rightarrow put\,x = 0\]in (1)
\[ \Rightarrow {(0)^3} + 3{(0)^2} + 3(0) + 1\]
\[\begin{gathered}
\Rightarrow 0 + 0 + 0 + 1 \\
\Rightarrow 1 \\
\end{gathered} \]
Hence the remainder is 1
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

