
Find the remainder when \[{{32}^{{{32}^{32}}}}\] is divided by 7.
Answer
595.8k+ views
Hint: We have the number \[{{32}^{{{32}^{32}}}}\] . Simplify it as \[{{32}^{1024}}\] . Write 32 as \[{{2}^{5}}\] . Now, simplify the number as \[{{2}^{2}}\times {{\left( {{2}^{3}} \right)}^{^{1706}}}\] . Replace \[{{2}^{3}}\] as \[(7+1)\] and then expand \[(7+1)\] using the formula
\[{{(x+y)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{y}^{0}}{{+}^{n}}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}{{+}^{n}}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+..........{{+}^{n}}{{C}_{n}}{{x}^{0}}{{y}^{n}}\] . The terms \[^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}\] , \[^{1706}{{C}_{1}}{{7}^{1705}}{{.1}^{1}}\] , ……….., and \[^{1706}{{C}_{1705}}{{7}^{1}}{{.1}^{1706}}\] are divisible by 7 because these terms have exponents to the base 7. So, write \[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)\] as 7N. Replace \[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)\] by 7N in
\[{{2}^{2}}{{(7+1)}^{1706}}{{=}^{1706}}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}}{{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}}\] . Now, solve it further and find the remainder.
Complete step-by-step answer:
According to the question, our given number is \[{{32}^{{{32}^{32}}}}\] . In the number \[{{32}^{{{32}^{32}}}}\] , we have \[{{32}^{32}}\] as its power.
First of all, we have to simplify \[{{32}^{{{32}^{32}}}}\] .
On simplifying, we get
\[{{32}^{{{32}^{32}}}}={{32}^{1024}}\] …………………(1)
We know that 32 can be written as \[{{2}^{5}}\] .
Transforming equation (1), we get
\[{{32}^{1024}}={{\left( {{2}^{5}} \right)}^{1024}}={{\left( 2 \right)}^{5120}}\] ……………..(2)
We have to simplify equation (2).
On further simplification of equation (2), we get
\[\begin{align}
& {{32}^{1024}} \\
& ={{\left( 2 \right)}^{5120}} \\
& ={{2}^{2}}\times {{2}^{5118}} \\
& ={{2}^{2}}\times {{\left( {{2}^{3}} \right)}^{^{1706}}} \\
\end{align}\]
\[{{2}^{3}}\] can be written as \[(7+1)\] .
\[={{2}^{2}}\times {{\left( 7+1 \right)}^{1706}}\] …………………(3)
Now, we have to use the binomial series expansion.
We know the formula that,
\[{{(x+y)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{y}^{0}}{{+}^{n}}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}{{+}^{n}}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+..........{{+}^{n}}{{C}_{n}}{{x}^{0}}{{y}^{n}}\] ………………(4)
Replacing x, y, and n by 7, 1, and 1706 respectively in equation (4), we get
\[{{(7+1)}^{1706}}{{=}^{1706}}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}}{{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}}\]
\[{{(7+1)}^{1706}}{{=}^{1706}}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}}{{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}}\] ………………………(5)
In equation (5), the terms \[^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}\] , \[^{1706}{{C}_{1}}{{7}^{1705}}{{.1}^{1}}\] , ……….., and \[^{1706}{{C}_{1705}}{{7}^{1}}{{.1}^{1706}}\] are divisible by 7 because these terms have exponents to the base 7.
So, \[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)\] is also divisible by 7.
Since \[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)\] is divisible by 7, so it can be written as 7N where N is an integer.
\[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)=7N\] ……………….(6)
Now, transforming equation (5) by using equation (6), we get
\[\begin{align}
& {{(7+1)}^{1706}}{{=}^{1706}}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}}{{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}} \\
& \Rightarrow {{(7+1)}^{1706}}=\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right){{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}} \\
\end{align}\]
The value of \[^{1706}{{C}_{1706}}\] is 1.
\[\Rightarrow {{(7+1)}^{1706}}=7N+1\] ……………..(7)
From equation (3), we have \[{{2}^{2}}\times {{\left( 7+1 \right)}^{1706}}\] .
Using equation (7), we can transform equation (3).
Transforming equation (3), we get
\[\begin{align}
& {{2}^{2}}\times {{\left( 7+1 \right)}^{1706}} \\
& ={{2}^{2}}\times \left( 7N+1 \right) \\
& ={{2}^{2}}\times 7N+{{2}^{2}} \\
\end{align}\]
\[=28N+4\] ………………..(8)
In equation (8), we can see that 28N will be divisible by 7 but 4 will not be divisible by 7. So, 4 is the remainder.
Hence, the remainder of \[{{32}^{{{32}^{32}}}}\] is 4 when divided by 7.
Note: In this question, one might think to solve the given exponent. If we do so then we have to find the number which is equal to \[{{32}^{{{32}^{32}}}}\] , which will be very complex to find. We cannot get that number without using a calculator.
\[{{(x+y)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{y}^{0}}{{+}^{n}}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}{{+}^{n}}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+..........{{+}^{n}}{{C}_{n}}{{x}^{0}}{{y}^{n}}\] . The terms \[^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}\] , \[^{1706}{{C}_{1}}{{7}^{1705}}{{.1}^{1}}\] , ……….., and \[^{1706}{{C}_{1705}}{{7}^{1}}{{.1}^{1706}}\] are divisible by 7 because these terms have exponents to the base 7. So, write \[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)\] as 7N. Replace \[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)\] by 7N in
\[{{2}^{2}}{{(7+1)}^{1706}}{{=}^{1706}}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}}{{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}}\] . Now, solve it further and find the remainder.
Complete step-by-step answer:
According to the question, our given number is \[{{32}^{{{32}^{32}}}}\] . In the number \[{{32}^{{{32}^{32}}}}\] , we have \[{{32}^{32}}\] as its power.
First of all, we have to simplify \[{{32}^{{{32}^{32}}}}\] .
On simplifying, we get
\[{{32}^{{{32}^{32}}}}={{32}^{1024}}\] …………………(1)
We know that 32 can be written as \[{{2}^{5}}\] .
Transforming equation (1), we get
\[{{32}^{1024}}={{\left( {{2}^{5}} \right)}^{1024}}={{\left( 2 \right)}^{5120}}\] ……………..(2)
We have to simplify equation (2).
On further simplification of equation (2), we get
\[\begin{align}
& {{32}^{1024}} \\
& ={{\left( 2 \right)}^{5120}} \\
& ={{2}^{2}}\times {{2}^{5118}} \\
& ={{2}^{2}}\times {{\left( {{2}^{3}} \right)}^{^{1706}}} \\
\end{align}\]
\[{{2}^{3}}\] can be written as \[(7+1)\] .
\[={{2}^{2}}\times {{\left( 7+1 \right)}^{1706}}\] …………………(3)
Now, we have to use the binomial series expansion.
We know the formula that,
\[{{(x+y)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{y}^{0}}{{+}^{n}}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}{{+}^{n}}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+..........{{+}^{n}}{{C}_{n}}{{x}^{0}}{{y}^{n}}\] ………………(4)
Replacing x, y, and n by 7, 1, and 1706 respectively in equation (4), we get
\[{{(7+1)}^{1706}}{{=}^{1706}}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}}{{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}}\]
\[{{(7+1)}^{1706}}{{=}^{1706}}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}}{{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}}\] ………………………(5)
In equation (5), the terms \[^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}\] , \[^{1706}{{C}_{1}}{{7}^{1705}}{{.1}^{1}}\] , ……….., and \[^{1706}{{C}_{1705}}{{7}^{1}}{{.1}^{1706}}\] are divisible by 7 because these terms have exponents to the base 7.
So, \[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)\] is also divisible by 7.
Since \[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)\] is divisible by 7, so it can be written as 7N where N is an integer.
\[\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right)=7N\] ……………….(6)
Now, transforming equation (5) by using equation (6), we get
\[\begin{align}
& {{(7+1)}^{1706}}{{=}^{1706}}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}}{{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}} \\
& \Rightarrow {{(7+1)}^{1706}}=\left( ^{1706}{{C}_{0}}{{7}^{1706}}{{.1}^{0}}{{+}^{1706}}{{C}_{1}}{{7}^{1706-1}}{{.1}^{1}}{{+}^{1706}}{{C}_{2}}{{7}^{1706-2}}{{.1}^{2}}+..........{{+}^{1706}}{{C}_{1705}}{{7}^{1}}{{.1}^{1705}} \right){{+}^{1706}}{{C}_{1706}}{{7}^{0}}{{.1}^{1706}} \\
\end{align}\]
The value of \[^{1706}{{C}_{1706}}\] is 1.
\[\Rightarrow {{(7+1)}^{1706}}=7N+1\] ……………..(7)
From equation (3), we have \[{{2}^{2}}\times {{\left( 7+1 \right)}^{1706}}\] .
Using equation (7), we can transform equation (3).
Transforming equation (3), we get
\[\begin{align}
& {{2}^{2}}\times {{\left( 7+1 \right)}^{1706}} \\
& ={{2}^{2}}\times \left( 7N+1 \right) \\
& ={{2}^{2}}\times 7N+{{2}^{2}} \\
\end{align}\]
\[=28N+4\] ………………..(8)
In equation (8), we can see that 28N will be divisible by 7 but 4 will not be divisible by 7. So, 4 is the remainder.
Hence, the remainder of \[{{32}^{{{32}^{32}}}}\] is 4 when divided by 7.
Note: In this question, one might think to solve the given exponent. If we do so then we have to find the number which is equal to \[{{32}^{{{32}^{32}}}}\] , which will be very complex to find. We cannot get that number without using a calculator.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

