
find the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\].
(a) \[1:4{{\left( 16 \right)}^{\dfrac{1}{3}}}\]
(b) \[1:2{{\left( 6 \right)}^{\dfrac{1}{3}}}\]
(c) \[2{{\left( 36 \right)}^{\dfrac{1}{3}}}:1\]
(d) \[4{{\left( 36 \right)}^{\dfrac{1}{3}}}:1\]
Answer
578.7k+ views
Hint: In this question, we have to first find the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\].
Using the formula of binomial expansion of elements say \[a\] and \[b\] raised to the power \[n\] which is given by \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}+...{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Also since the number of terms in the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is equal to \[n+1\]. Using this we will have that the number of terms in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] is equals to 11. After finding the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] we will have to determine the fifth term from the beginning to the fifth term from the end in the binomial expansion and then find the ratio of the same.
Complete step by step answer:
Let us first determine the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\].
Since we know that the binomial expansion of elements say \[a\] and \[b\] raised to the power \[n\] which is given by \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}+...{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
On comparing the expression \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] with \[{{\left( a+b \right)}^{n}}\], we get that
\[a={{2}^{\dfrac{1}{3}}}\], \[b=\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}}\] and \[n=10\].
Now since we know that the number of terms in the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is equal to \[n+1\].
Using this we will have that the number of terms in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] is equals to
\[10+1=11\]
Now we will evaluate \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] using the formula \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}+...{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}\].
Then we get
\[\begin{align}
& {{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}{{=}^{10}}{{C}_{0}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{0}}{{+}^{10}}{{C}_{1}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10-1}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{1}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{10}}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10-6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}+...{{+}^{10}}{{C}_{9}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{1}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{9}}{{+}^{10}}{{C}_{10}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{0}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}} \\
\end{align}\]
Now since the first term from the beginning of the above binomial expansion is given by
\[^{10}{{C}_{0}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{0}}\]
Therefore the fifth term from the beginning of the above binomial expansion is given by
\[^{10}{{C}_{4}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10-4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}{{=}^{10}}{{C}_{4}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}..........(1)\]
Also the last term of the above binomial expansion is given
\[^{10}{{C}_{10}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{0}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\]
Therefore the fifth term from the end of the above binomial expansion is given by
\[^{10}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10-6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}{{=}^{10}}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}..............(2)\]
Now in order to determine the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\].
We have to divide the expression in equation (1) by the expression in equation (2).
Then we get
\[\dfrac{^{10}{{C}_{4}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}}{^{10}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}}..............(3)\]
Now on calculating the value of \[^{10}{{C}_{6}}\] using \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] , we get
\[^{10}{{C}_{6}}=\dfrac{10!}{6!4!}\]
Also we have
\[^{10}{{C}_{4}}=\dfrac{10!}{4!6!}\]
Since the value \[^{10}{{C}_{6}}=\dfrac{10!}{6!4!}{{=}^{10}}{{C}_{4}}\], therefore from (3) we have
\[\dfrac{^{10}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}}{^{10}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}}=\dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}}\]
Now on calculating the above expression we get
\[\begin{align}
& \dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}}={{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6-4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4-6}} \\
& ={{\left( {{2}^{\dfrac{1}{3}}} \right)}^{2}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{-2}} \\
& =\left( {{2}^{\dfrac{2}{3}}} \right)\left( \dfrac{1}{{{2}^{-2}}{{\left( 3 \right)}^{\dfrac{-2}{3}}}} \right) \\
& =\left( {{2}^{\dfrac{2}{3}}} \right)\left( {{2}^{2}}{{\left( 3 \right)}^{\dfrac{2}{3}}} \right) \\
& =4\left( {{\left( 2 \right)}^{\dfrac{2}{3}}}{{\left( 3 \right)}^{\dfrac{2}{3}}} \right) \\
& =4{{\left( 6 \right)}^{\dfrac{2}{3}}} \\
& =4{{\left( {{6}^{2}} \right)}^{\dfrac{1}{3}}} \\
& ==4{{\left( 36 \right)}^{\dfrac{1}{3}}}
\end{align}\]
Hence we have the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] is equals to \[4{{\left( 36 \right)}^{\dfrac{1}{3}}}:1\].
So, the correct answer is “Option D”.
Note: In this problem, in order to determine the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\]
We have to find the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\]. While calculating the fifth term from the beginning we have carefully chosen the term by seeing the first term of the expansion.
Using the formula of binomial expansion of elements say \[a\] and \[b\] raised to the power \[n\] which is given by \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}+...{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Also since the number of terms in the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is equal to \[n+1\]. Using this we will have that the number of terms in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] is equals to 11. After finding the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] we will have to determine the fifth term from the beginning to the fifth term from the end in the binomial expansion and then find the ratio of the same.
Complete step by step answer:
Let us first determine the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\].
Since we know that the binomial expansion of elements say \[a\] and \[b\] raised to the power \[n\] which is given by \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}+...{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
On comparing the expression \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] with \[{{\left( a+b \right)}^{n}}\], we get that
\[a={{2}^{\dfrac{1}{3}}}\], \[b=\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}}\] and \[n=10\].
Now since we know that the number of terms in the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is equal to \[n+1\].
Using this we will have that the number of terms in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] is equals to
\[10+1=11\]
Now we will evaluate \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] using the formula \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}+...{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}\].
Then we get
\[\begin{align}
& {{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}{{=}^{10}}{{C}_{0}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{0}}{{+}^{10}}{{C}_{1}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10-1}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{1}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{10}}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10-6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}+...{{+}^{10}}{{C}_{9}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{1}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{9}}{{+}^{10}}{{C}_{10}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{0}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}} \\
\end{align}\]
Now since the first term from the beginning of the above binomial expansion is given by
\[^{10}{{C}_{0}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{0}}\]
Therefore the fifth term from the beginning of the above binomial expansion is given by
\[^{10}{{C}_{4}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10-4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}{{=}^{10}}{{C}_{4}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}..........(1)\]
Also the last term of the above binomial expansion is given
\[^{10}{{C}_{10}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{0}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\]
Therefore the fifth term from the end of the above binomial expansion is given by
\[^{10}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{10-6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}{{=}^{10}}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}..............(2)\]
Now in order to determine the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\].
We have to divide the expression in equation (1) by the expression in equation (2).
Then we get
\[\dfrac{^{10}{{C}_{4}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}}{^{10}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}}..............(3)\]
Now on calculating the value of \[^{10}{{C}_{6}}\] using \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] , we get
\[^{10}{{C}_{6}}=\dfrac{10!}{6!4!}\]
Also we have
\[^{10}{{C}_{4}}=\dfrac{10!}{4!6!}\]
Since the value \[^{10}{{C}_{6}}=\dfrac{10!}{6!4!}{{=}^{10}}{{C}_{4}}\], therefore from (3) we have
\[\dfrac{^{10}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}}{^{10}{{C}_{6}}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}}=\dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}}\]
Now on calculating the above expression we get
\[\begin{align}
& \dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{6}}}={{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6-4}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{4-6}} \\
& ={{\left( {{2}^{\dfrac{1}{3}}} \right)}^{2}}{{\left( \dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{-2}} \\
& =\left( {{2}^{\dfrac{2}{3}}} \right)\left( \dfrac{1}{{{2}^{-2}}{{\left( 3 \right)}^{\dfrac{-2}{3}}}} \right) \\
& =\left( {{2}^{\dfrac{2}{3}}} \right)\left( {{2}^{2}}{{\left( 3 \right)}^{\dfrac{2}{3}}} \right) \\
& =4\left( {{\left( 2 \right)}^{\dfrac{2}{3}}}{{\left( 3 \right)}^{\dfrac{2}{3}}} \right) \\
& =4{{\left( 6 \right)}^{\dfrac{2}{3}}} \\
& =4{{\left( {{6}^{2}} \right)}^{\dfrac{1}{3}}} \\
& ==4{{\left( 36 \right)}^{\dfrac{1}{3}}}
\end{align}\]
Hence we have the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\] is equals to \[4{{\left( 36 \right)}^{\dfrac{1}{3}}}:1\].
So, the correct answer is “Option D”.
Note: In this problem, in order to determine the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\]
We have to find the binomial expansion of \[{{\left( {{2}^{\dfrac{1}{3}}}+\dfrac{1}{2{{\left( 3 \right)}^{\dfrac{1}{3}}}} \right)}^{10}}\]. While calculating the fifth term from the beginning we have carefully chosen the term by seeing the first term of the expansion.
Recently Updated Pages
Cotyledon of maize grain is called as A Plumule B Coleorhiza class 11 biology CBSE

The SI unit of potential difference is a Ohm b Ampere class 11 physics CBSE

Graph drawn from the equation y x2 3x 4 will be class 11 maths CBSE

What is the meaning of halogens class 11 chemistry CBSE

How much volume does one mole of gas occupy at NTP class 11 physics CBSE

Is the soap solution acidic basic or neutral How would class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

