
Find the ratio in which the point P(x, 2) divides the line segment joining the points A(12, 5) and B(4, -3). Also, find the value of x.
Answer
562.8k+ views
Hint: In this question, we are given coordinates of end points of a line and y coordinates of a point dividing the line segment. We have to find x coordinate of the point and ratio in which that point divides the line segment. For this, we will use a section formula. Section formula used to find the coordinates of a point dividing the line segment having end points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ in the ratio m:n is given by $\left( x,y \right)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$.
Complete step-by-step solution:
As per the question, we have to find the value of x and m:n. Using $\left( x \right)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n} \right)$ we will find value of x and using $\left( y \right)=\left( \dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$ we will find value of m:n.
Here, we are given end points of line segment AB as A(12,5) and B(4,-3). Point P(x,2) divides the line segment AB in some ratio. Let us suppose that this ratio is m:n. As we know, section formula used to find coordinates of a point dividing the line segment having end points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ in ratio $m:n$ given by $\left( x,y \right)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$.
From given question, y = 2, ${{x}_{1}}=12,{{y}_{1}}=5,{{x}_{2}}=4\text{ and }{{y}_{2}}=-3$
So section formula for the line AB where point P divides AB in ratio m:n becomes
\[\Rightarrow \left( x,2 \right)=\left( \dfrac{4m+12n}{m+n},\dfrac{-3m+5n}{m+n} \right)\]
Comparing coordinates we get:
\[\begin{align}
& \Rightarrow x=\dfrac{4m+12n}{m+n}\cdots \cdots \cdots \cdots \cdots \left( 1 \right) \\
& \Rightarrow 2=\dfrac{-3m+5n}{m+n}\cdots \cdots \cdots \cdots \cdots \left( 2 \right) \\
\end{align}\]
Let us use (2) to find the ratio m:n we get:
\[\Rightarrow 2=\dfrac{-3m+5n}{m+n}\]
Cross multiplying we get:
\[\begin{align}
& \Rightarrow 2\left( m+n \right)=-3m+5n \\
& \Rightarrow 2m+2n=-3m+5n \\
\end{align}\]
Taking m values one side and n values on other we get:
\[\begin{align}
& \Rightarrow 2m+3m=5n-2n \\
& \Rightarrow 5m=3n \\
\end{align}\]
Dividing both side by 5n we get:
\[\begin{align}
& \Rightarrow \dfrac{5m}{5n}=\dfrac{3n}{5n} \\
& \Rightarrow \dfrac{m}{n}=\dfrac{3}{5} \\
\end{align}\]
Therefore, m:n = 3:5 . . . . . . . . . . . . . . . . . (3).
Using (1) and (3), let us find value of x, equation (1) is given as $\Rightarrow x=\dfrac{4m+12n}{m+n}$
From (3) let us put values of m and n, we get:
\[\begin{align}
& \Rightarrow x=\dfrac{4\left( 3 \right)+12\left( 5 \right)}{3+5} \\
& \Rightarrow x=\dfrac{12+60}{8} \\
& \Rightarrow x=\dfrac{72}{8} \\
& \therefore x=9 \\
\end{align}\]
Therefore, the value of x is equal to 9. Hence, ratio $m:n$ is equal to 3:5, and the value of x is equal to 9.
Note: Students should carefully apply the section formula for finding coordinates of point dividing the line in the ratio m:n. We have used ratio values of m and n in equation (1), because the common ratio of m, n will be cancelled out automatically in the formula $x=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n} \right)$.
Complete step-by-step solution:
As per the question, we have to find the value of x and m:n. Using $\left( x \right)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n} \right)$ we will find value of x and using $\left( y \right)=\left( \dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$ we will find value of m:n.
Here, we are given end points of line segment AB as A(12,5) and B(4,-3). Point P(x,2) divides the line segment AB in some ratio. Let us suppose that this ratio is m:n. As we know, section formula used to find coordinates of a point dividing the line segment having end points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ in ratio $m:n$ given by $\left( x,y \right)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$.
From given question, y = 2, ${{x}_{1}}=12,{{y}_{1}}=5,{{x}_{2}}=4\text{ and }{{y}_{2}}=-3$
So section formula for the line AB where point P divides AB in ratio m:n becomes
\[\Rightarrow \left( x,2 \right)=\left( \dfrac{4m+12n}{m+n},\dfrac{-3m+5n}{m+n} \right)\]
Comparing coordinates we get:
\[\begin{align}
& \Rightarrow x=\dfrac{4m+12n}{m+n}\cdots \cdots \cdots \cdots \cdots \left( 1 \right) \\
& \Rightarrow 2=\dfrac{-3m+5n}{m+n}\cdots \cdots \cdots \cdots \cdots \left( 2 \right) \\
\end{align}\]
Let us use (2) to find the ratio m:n we get:
\[\Rightarrow 2=\dfrac{-3m+5n}{m+n}\]
Cross multiplying we get:
\[\begin{align}
& \Rightarrow 2\left( m+n \right)=-3m+5n \\
& \Rightarrow 2m+2n=-3m+5n \\
\end{align}\]
Taking m values one side and n values on other we get:
\[\begin{align}
& \Rightarrow 2m+3m=5n-2n \\
& \Rightarrow 5m=3n \\
\end{align}\]
Dividing both side by 5n we get:
\[\begin{align}
& \Rightarrow \dfrac{5m}{5n}=\dfrac{3n}{5n} \\
& \Rightarrow \dfrac{m}{n}=\dfrac{3}{5} \\
\end{align}\]
Therefore, m:n = 3:5 . . . . . . . . . . . . . . . . . (3).
Using (1) and (3), let us find value of x, equation (1) is given as $\Rightarrow x=\dfrac{4m+12n}{m+n}$
From (3) let us put values of m and n, we get:
\[\begin{align}
& \Rightarrow x=\dfrac{4\left( 3 \right)+12\left( 5 \right)}{3+5} \\
& \Rightarrow x=\dfrac{12+60}{8} \\
& \Rightarrow x=\dfrac{72}{8} \\
& \therefore x=9 \\
\end{align}\]
Therefore, the value of x is equal to 9. Hence, ratio $m:n$ is equal to 3:5, and the value of x is equal to 9.
Note: Students should carefully apply the section formula for finding coordinates of point dividing the line in the ratio m:n. We have used ratio values of m and n in equation (1), because the common ratio of m, n will be cancelled out automatically in the formula $x=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n} \right)$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

