
Find the ratio in which the line $ 2x + 3y - 5 = 0 $ divides the line segment joining the points $ \left( {8, - 9} \right) $ and $ \left( {2,1} \right) $ . Also find the coordinates of the point of division.
Answer
543.6k+ views
Hint: In the given problem, we are asked to find the ratio and co-ordinates of the point of division such that the line $ 2x + 3y - 5 = 0 $ divides the line segment joining the points $ \left( {8, - 9} \right) $ and $ \left( {2,1} \right) $ . In order to find the ratio we will use a section formula.
Complete step by step solution:
In this given problem, the line of equation is $ 2x + 3y - 5 = 0 $ . Let $ A\left( {{x_1},{y_1}} \right) = \left( {8, - 9} \right) $ and $ B\left( {{x_2},{y_2}} \right) = \left( {2,1} \right) $ be the end points of line segment $ AB $ and $ P\left( {x,y} \right) $ be the point of division of line segment joining the $ AB $ .
Let us assume that the ratio in which $ P $ divides $ AB $ is $ m:n = k:1 $ . Therefore, by using section formula coordinates of $ P $ is
$
P\left( {x,y} \right) = \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow P\left( {x,y} \right) = \left( {\dfrac{{2k + 8}}{{k + 1}},\dfrac{{k - 9}}{{k + 1}}} \right) \;
$
We know that $ P $ lies on the line $ 2x + 3y - 5 = 0 $ . Hence it will satisfy the equation of line. Therefore, we can write
$
2\left( {\dfrac{{2k + 8}}{{k + 1}}} \right) + 3\left( {\dfrac{{k - 9}}{{k + 1}}} \right) - 5 = 0 \\
\Rightarrow 2\left( {\dfrac{{2k + 8}}{{k + 1}}} \right) + 3\left( {\dfrac{{k - 9}}{{k + 1}}} \right) = 5 \\
$
Now we take $ \dfrac{1}{{k + 1}} $ common in the left hand side of the equality sign and then multiplied both sides by $ k + 1 $ . Then, we get
$ 2\left( {2k + 8} \right) + 3\left( {k - 9} \right) = 5\left( {k + 1} \right) $
Let us simplify the above equation and find the value of $ k $ . Therefore, we can write
$
4k + 16 + 3k - 27 = 5k + 5 \\
\Rightarrow 4k + 3k - 5k = 5 + 27 - 16 \\
\Rightarrow 2k = 16 \\
\Rightarrow k = \dfrac{{16}}{2} \\
\Rightarrow k = 8 \;
$
Let us put $ k = 8 $ in $ P\left( {x,y} \right) = \left( {\dfrac{{2k + 8}}{{k + 1}},\dfrac{{k - 9}}{{k + 1}}} \right) $ . Therefore, we get $ P\left( {x,y} \right) = \left( {\dfrac{{24}}{9}, - \dfrac{1}{9}} \right) $
Therefore, we can say that the ratio in which the line $ 2x + 3y - 5 = 0 $ divided the line segment joining the point $ \left( {8, - 9} \right) $ and $ \left( {2,1} \right) $ is $ k:1 = 8:1 $ and coordinates of point $ P $ is given by $ \left( {x,y} \right) = \left( {\dfrac{{2k + 8}}{{k + 1}},\dfrac{{k - 9}}{{k + 1}}} \right) = \left( {\dfrac{{24}}{9},\dfrac{{ - 1}}{9}} \right) $ .
So, the correct answer is “ $ \left( {\dfrac{{24}}{9},\dfrac{{ - 1}}{9}} \right) $ .”
Note: According to the section formula, the coordinates of the point $ P\left( {x,y} \right) $ which divides the line segment joining the point $ A\left( {{x_1},{y_1}} \right) $ and $ B\left( {{x_2},{y_2}} \right) $ in the ratio $ {m_1}:{m_2} $ internally, is $ \left( {\dfrac{{{m_1}{x_1} + {m_2}{x_2}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_1} + {m_2}{y_2}}}{{{m_1} + {m_2}}}} \right) $ . Then by using this ratio we will find the coordinates of the point of division. If the midpoint of a line segment divides the line segment in the ratio $ 1:1 $ then the coordinates of the mid-point $ P $ is $ \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right) $ .
Complete step by step solution:
In this given problem, the line of equation is $ 2x + 3y - 5 = 0 $ . Let $ A\left( {{x_1},{y_1}} \right) = \left( {8, - 9} \right) $ and $ B\left( {{x_2},{y_2}} \right) = \left( {2,1} \right) $ be the end points of line segment $ AB $ and $ P\left( {x,y} \right) $ be the point of division of line segment joining the $ AB $ .
Let us assume that the ratio in which $ P $ divides $ AB $ is $ m:n = k:1 $ . Therefore, by using section formula coordinates of $ P $ is
$
P\left( {x,y} \right) = \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow P\left( {x,y} \right) = \left( {\dfrac{{2k + 8}}{{k + 1}},\dfrac{{k - 9}}{{k + 1}}} \right) \;
$
We know that $ P $ lies on the line $ 2x + 3y - 5 = 0 $ . Hence it will satisfy the equation of line. Therefore, we can write
$
2\left( {\dfrac{{2k + 8}}{{k + 1}}} \right) + 3\left( {\dfrac{{k - 9}}{{k + 1}}} \right) - 5 = 0 \\
\Rightarrow 2\left( {\dfrac{{2k + 8}}{{k + 1}}} \right) + 3\left( {\dfrac{{k - 9}}{{k + 1}}} \right) = 5 \\
$
Now we take $ \dfrac{1}{{k + 1}} $ common in the left hand side of the equality sign and then multiplied both sides by $ k + 1 $ . Then, we get
$ 2\left( {2k + 8} \right) + 3\left( {k - 9} \right) = 5\left( {k + 1} \right) $
Let us simplify the above equation and find the value of $ k $ . Therefore, we can write
$
4k + 16 + 3k - 27 = 5k + 5 \\
\Rightarrow 4k + 3k - 5k = 5 + 27 - 16 \\
\Rightarrow 2k = 16 \\
\Rightarrow k = \dfrac{{16}}{2} \\
\Rightarrow k = 8 \;
$
Let us put $ k = 8 $ in $ P\left( {x,y} \right) = \left( {\dfrac{{2k + 8}}{{k + 1}},\dfrac{{k - 9}}{{k + 1}}} \right) $ . Therefore, we get $ P\left( {x,y} \right) = \left( {\dfrac{{24}}{9}, - \dfrac{1}{9}} \right) $
Therefore, we can say that the ratio in which the line $ 2x + 3y - 5 = 0 $ divided the line segment joining the point $ \left( {8, - 9} \right) $ and $ \left( {2,1} \right) $ is $ k:1 = 8:1 $ and coordinates of point $ P $ is given by $ \left( {x,y} \right) = \left( {\dfrac{{2k + 8}}{{k + 1}},\dfrac{{k - 9}}{{k + 1}}} \right) = \left( {\dfrac{{24}}{9},\dfrac{{ - 1}}{9}} \right) $ .
So, the correct answer is “ $ \left( {\dfrac{{24}}{9},\dfrac{{ - 1}}{9}} \right) $ .”
Note: According to the section formula, the coordinates of the point $ P\left( {x,y} \right) $ which divides the line segment joining the point $ A\left( {{x_1},{y_1}} \right) $ and $ B\left( {{x_2},{y_2}} \right) $ in the ratio $ {m_1}:{m_2} $ internally, is $ \left( {\dfrac{{{m_1}{x_1} + {m_2}{x_2}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_1} + {m_2}{y_2}}}{{{m_1} + {m_2}}}} \right) $ . Then by using this ratio we will find the coordinates of the point of division. If the midpoint of a line segment divides the line segment in the ratio $ 1:1 $ then the coordinates of the mid-point $ P $ is $ \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right) $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

