
Find the range of real number α for which the equation\[z + \alpha |z - 1| + 2i = 0\], \[z = x + iy\] has a solution. Find the solution.
A. $x = \dfrac{5}{2},\,y = - 2$
B. $x = - 2,\,y = \dfrac{5}{2}$
C. $x = - \dfrac{5}{2},y = 2$
D.$x = 2,\,y = - \dfrac{5}{2}$
Answer
594k+ views
Hint: Use \[z = x + iy,\,\,|z| = \sqrt {{x^2} + {y^2}} \]to find solution of the equation.
Complete step by step answer:
(1) Given equation is
\[z + \alpha |z - 1| + 2i = 0\]
Here, \[z = x + iy\]
(2) \[x + iy + \alpha |(x + iy) - 1| + 2i = 0\]
\[x + iy + \alpha |(x - 1) + (iy)| + 2i = 0\]
(3) Using mode property
\[x + iy + \alpha \sqrt {{{(x - 1)}^2} + {{(y)}^2}} + 2i = 0\]
Now we will shift the value of\[\alpha \sqrt {{{(x - 1)}^2} + {{(y)}^2}} \]to the right side,
(4) \[x + (y + 2)i = - \alpha \sqrt {{{(x - 1)}^2} + {y^2}} \]
Squaring both sides, we will get
\[{\{ x + (y + 2)i\} ^2} = {\alpha ^2}{\left[ {\sqrt {{{(x - 1)}^2} + {y^2}} } \right]^2}\]
\[{x^2} + {(y + 2)^2} + 2x(y + 2)i = {\alpha ^2}\left[ {{{(x - 1)}^2} + {y^2}} \right]\]
\[ \Rightarrow \] Equating real and imaginary part from both sides
Imaginary part:
\[
2x(y + 2) = 0 \\
\Rightarrow x = 0,\,\,y = - 2 \\
\]
Real part, \[{x^2} + {(y + 2)^2} = {\alpha ^2}|{(x - 1)^2} + {y^2}|\]
Taking \[y = - 2\] in the real part for complex number, we get
\[{x^2} + {( - 2 + 2)^2} = {\alpha ^2}\left[ {{{(x - 1)}^2} + 4} \right]\]
Using algebraic identity: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we will get
$ \Rightarrow {x^2} + 0 = {\alpha ^2}({x^2} + 1 - 2x + 4)$
\[ \Rightarrow ({x^2} - 2x + 1 + 4) = \dfrac{{{x^2}}}{{{\alpha ^2}}}\]
\[ \Rightarrow {x^2} - 2x + 5 = \dfrac{{{x^2}}}{{{\alpha ^2}}}\]
\[\]\[ \Rightarrow {x^2} - 2x + 5 - \dfrac{{{x^2}}}{{{\alpha ^2}}} = 0\]
\[ \Rightarrow {x^2}\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right) - 2x + 5 = 0\]
For real \[x,D \geqslant 0\]
\[{b^2} - 4ac \geqslant 0\]
\[ \Rightarrow 4 - 4\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right)5 \geqslant 0\]
\[ \Rightarrow 4 - 20\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right) \geqslant 0\]
\[ \Rightarrow 4 - 20 + \dfrac{{20}}{{{\alpha ^2}}} \geqslant 0\]
\[ \Rightarrow - 16 + \dfrac{{20}}{{{\alpha ^2}}} \geqslant 0\]
\[ \Rightarrow \dfrac{{20}}{{{\alpha ^2}}} \geqslant 16\]
\[ \Rightarrow 16{\alpha ^2} < 20\]
\[ \Rightarrow {\alpha ^2} < \dfrac{{20}}{{16}} = \dfrac{5}{4}\]
\[ \Rightarrow {\alpha ^2}\alpha \dfrac{5}{4}\]
\[\therefore \alpha \in \left( {\sqrt {\dfrac{{ - 5}}{4}} ,\sqrt {\dfrac{5}{4}} } \right)\]
Or\[\left( { - \dfrac{{\sqrt 5 }}{2},\dfrac{{ + \sqrt 5 }}{2}} \right)\]
(5) Hence, range of real α is \[\left( {\dfrac{{ - \sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right)\]
(6) Therefore, the required solution of the \[x = \dfrac{5}{2},\,\,y = - 2\]
Note: The range of a function is the set of outputs. The function achieves when it is applied to its whole set of outputs. A function relates an input to an output. The range is the set of objects that actually come out of the machine when you feed it with all the inputs.
Complete step by step answer:
(1) Given equation is
\[z + \alpha |z - 1| + 2i = 0\]
Here, \[z = x + iy\]
(2) \[x + iy + \alpha |(x + iy) - 1| + 2i = 0\]
\[x + iy + \alpha |(x - 1) + (iy)| + 2i = 0\]
(3) Using mode property
\[x + iy + \alpha \sqrt {{{(x - 1)}^2} + {{(y)}^2}} + 2i = 0\]
Now we will shift the value of\[\alpha \sqrt {{{(x - 1)}^2} + {{(y)}^2}} \]to the right side,
(4) \[x + (y + 2)i = - \alpha \sqrt {{{(x - 1)}^2} + {y^2}} \]
Squaring both sides, we will get
\[{\{ x + (y + 2)i\} ^2} = {\alpha ^2}{\left[ {\sqrt {{{(x - 1)}^2} + {y^2}} } \right]^2}\]
\[{x^2} + {(y + 2)^2} + 2x(y + 2)i = {\alpha ^2}\left[ {{{(x - 1)}^2} + {y^2}} \right]\]
\[ \Rightarrow \] Equating real and imaginary part from both sides
Imaginary part:
\[
2x(y + 2) = 0 \\
\Rightarrow x = 0,\,\,y = - 2 \\
\]
Real part, \[{x^2} + {(y + 2)^2} = {\alpha ^2}|{(x - 1)^2} + {y^2}|\]
Taking \[y = - 2\] in the real part for complex number, we get
\[{x^2} + {( - 2 + 2)^2} = {\alpha ^2}\left[ {{{(x - 1)}^2} + 4} \right]\]
Using algebraic identity: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we will get
$ \Rightarrow {x^2} + 0 = {\alpha ^2}({x^2} + 1 - 2x + 4)$
\[ \Rightarrow ({x^2} - 2x + 1 + 4) = \dfrac{{{x^2}}}{{{\alpha ^2}}}\]
\[ \Rightarrow {x^2} - 2x + 5 = \dfrac{{{x^2}}}{{{\alpha ^2}}}\]
\[\]\[ \Rightarrow {x^2} - 2x + 5 - \dfrac{{{x^2}}}{{{\alpha ^2}}} = 0\]
\[ \Rightarrow {x^2}\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right) - 2x + 5 = 0\]
For real \[x,D \geqslant 0\]
\[{b^2} - 4ac \geqslant 0\]
\[ \Rightarrow 4 - 4\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right)5 \geqslant 0\]
\[ \Rightarrow 4 - 20\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right) \geqslant 0\]
\[ \Rightarrow 4 - 20 + \dfrac{{20}}{{{\alpha ^2}}} \geqslant 0\]
\[ \Rightarrow - 16 + \dfrac{{20}}{{{\alpha ^2}}} \geqslant 0\]
\[ \Rightarrow \dfrac{{20}}{{{\alpha ^2}}} \geqslant 16\]
\[ \Rightarrow 16{\alpha ^2} < 20\]
\[ \Rightarrow {\alpha ^2} < \dfrac{{20}}{{16}} = \dfrac{5}{4}\]
\[ \Rightarrow {\alpha ^2}\alpha \dfrac{5}{4}\]
\[\therefore \alpha \in \left( {\sqrt {\dfrac{{ - 5}}{4}} ,\sqrt {\dfrac{5}{4}} } \right)\]
Or\[\left( { - \dfrac{{\sqrt 5 }}{2},\dfrac{{ + \sqrt 5 }}{2}} \right)\]
(5) Hence, range of real α is \[\left( {\dfrac{{ - \sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right)\]
(6) Therefore, the required solution of the \[x = \dfrac{5}{2},\,\,y = - 2\]
Note: The range of a function is the set of outputs. The function achieves when it is applied to its whole set of outputs. A function relates an input to an output. The range is the set of objects that actually come out of the machine when you feed it with all the inputs.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

