
Find the radian measure corresponding to the following degree measures $\left( \text{use }\pi =\dfrac{22}{7} \right)$.
(i) ${{125}^{\circ }}30'$
Answer
593.7k+ views
Hint: The relation between degrees and radians work better here as we need a conversion for degree to radians. The formula is given numerically by,
$\begin{align}
& {{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( \dfrac{180}{180} \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
(i) We will now consider the degrees ${{125}^{\circ }}30'$ and we will convert it into its simple radians. We know that 1 degree = 60 minutes. This can be numerically written as ${{\left( 1 \right)}^{\circ }}=60'$. Therefore we can write it as ${{\left( \dfrac{1}{60} \right)}^{\circ }}=1'$. Thus we have,
$\begin{align}
& {{125}^{\circ }}30'={{125}^{\circ }}+30' \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+\left( 30\times 1' \right) \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+\left( 30\times {{\left( \dfrac{1}{60} \right)}^{\circ }} \right) \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+{{\left( 30\times \dfrac{1}{60} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+{{\left( \dfrac{1}{2} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{\left( 125+\dfrac{1}{2} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{\left( \dfrac{251}{2} \right)}^{\circ }} \\
\end{align}$
We will solve this with the help of the formula is given by ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$. Therefore, we have ${{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }}$. By substituting the value of ${{\left( 1 \right)}^{\circ }}$ we will have,
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
\end{align}$
This can be written as ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times \dfrac{\pi }{180} \right)}^{c}}$. Therefore we get,
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
\end{align}$
Now we will substitute $\pi =\dfrac{22}{7}$ in this equation. Thus, we get
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{360}\times \dfrac{22}{7} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{180}\times \dfrac{11}{7} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{2761}{1260} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.191 \right)}^{c}} \\
\end{align}$
Hence, we get ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{2761}{1260} \right)}^{c}}$ or ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.191 \right)}^{c}}$ in decimals.
Hence, the degree ${{125}^{\circ }}30'$ is equal to ${{\left( 2.191 \right)}^{c}}$ in radians.
Note: Alternatively we can put the direct value of ${{\left( 1 \right)}^{\circ }}={{\left( 0.0174 \right)}^{c}}$ in the expression $\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times 0.0174 \right)}^{c}} \\
\end{align}$
At this step we will use BODMAS rule and first solve division operation and after that we will solve multiplication operation. Therefore, we get
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 125.5\times 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.1837 \right)}^{c}} \\
\end{align}$
$\begin{align}
& {{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( \dfrac{180}{180} \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
(i) We will now consider the degrees ${{125}^{\circ }}30'$ and we will convert it into its simple radians. We know that 1 degree = 60 minutes. This can be numerically written as ${{\left( 1 \right)}^{\circ }}=60'$. Therefore we can write it as ${{\left( \dfrac{1}{60} \right)}^{\circ }}=1'$. Thus we have,
$\begin{align}
& {{125}^{\circ }}30'={{125}^{\circ }}+30' \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+\left( 30\times 1' \right) \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+\left( 30\times {{\left( \dfrac{1}{60} \right)}^{\circ }} \right) \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+{{\left( 30\times \dfrac{1}{60} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{125}^{\circ }}+{{\left( \dfrac{1}{2} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{\left( 125+\dfrac{1}{2} \right)}^{\circ }} \\
& \Rightarrow {{125}^{\circ }}30'={{\left( \dfrac{251}{2} \right)}^{\circ }} \\
\end{align}$
We will solve this with the help of the formula is given by ${{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}$. Therefore, we have ${{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }}$. By substituting the value of ${{\left( 1 \right)}^{\circ }}$ we will have,
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\
\end{align}$
This can be written as ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times \dfrac{\pi }{180} \right)}^{c}}$. Therefore we get,
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times \dfrac{\pi }{180} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
\end{align}$
Now we will substitute $\pi =\dfrac{22}{7}$ in this equation. Thus, we get
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251\pi }{360} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{360}\times \dfrac{22}{7} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{180}\times \dfrac{11}{7} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{2761}{1260} \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.191 \right)}^{c}} \\
\end{align}$
Hence, we get ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{2761}{1260} \right)}^{c}}$ or ${{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.191 \right)}^{c}}$ in decimals.
Hence, the degree ${{125}^{\circ }}30'$ is equal to ${{\left( 2.191 \right)}^{c}}$ in radians.
Note: Alternatively we can put the direct value of ${{\left( 1 \right)}^{\circ }}={{\left( 0.0174 \right)}^{c}}$ in the expression $\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 1 \right)}^{\circ }} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}=\dfrac{251}{2}\times {{\left( 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times 0.0174 \right)}^{c}} \\
\end{align}$
At this step we will use BODMAS rule and first solve division operation and after that we will solve multiplication operation. Therefore, we get
$\begin{align}
& {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( \dfrac{251}{2}\times 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 125.5\times 0.0174 \right)}^{c}} \\
& \Rightarrow {{\left( \dfrac{251}{2} \right)}^{\circ }}={{\left( 2.1837 \right)}^{c}} \\
\end{align}$
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

