
How do you find the quotient of a number and $12$ ?
Answer
537k+ views
Hint: As we can clearly see that the expression given in the question here means x divided by $12$. Whenever we see a question like this, our approach should be to simplify it. Thus, we need to expand it and then multiply the given variable x with the reciprocal of $12$ so that the process can be simplified and the digits which can be cancelled in the numerator and the denominator, they will get cancelled and the rest will be multiplied straight cross to obtain the answer.
Complete step by step solution:
So, in the required question, we are required to find the quotient when x is divided by $12$ and reduce it to the lowest form.
So, the variable x has to be divided by $12$. Hence, we multiply x by the reciprocal of $12$ that is$\left( {\dfrac{1}{{12}}} \right)$.
As we know that $\dfrac{a}{b}$ means a divided by b, the expression given in the question means the same as: x divided by 12.
So, We can multiply x with $\left( {\dfrac{1}{{12}}} \right)$ to perform the required task and find the quotient.
So, the quotient obtained on dividing x by $12$ is $\left( {\dfrac{x}{{12}}} \right)$.
Note: In a fraction, numerator and denominator never get cancelled in division. They only get cut in multiplication. Also, here we see that we can turn division into simple multiplication. In case, we have to divide a number by another number, what we can do is to simply multiply the first number by the inverse of the second. This rule could also be directly used to solve questions like this. The answer obtained would have remained the same. Lastly, it is good to convert your answer from improper fraction to mixed fraction even if it is not mentioned in the question.
Complete step by step solution:
So, in the required question, we are required to find the quotient when x is divided by $12$ and reduce it to the lowest form.
So, the variable x has to be divided by $12$. Hence, we multiply x by the reciprocal of $12$ that is$\left( {\dfrac{1}{{12}}} \right)$.
As we know that $\dfrac{a}{b}$ means a divided by b, the expression given in the question means the same as: x divided by 12.
So, We can multiply x with $\left( {\dfrac{1}{{12}}} \right)$ to perform the required task and find the quotient.
So, the quotient obtained on dividing x by $12$ is $\left( {\dfrac{x}{{12}}} \right)$.
Note: In a fraction, numerator and denominator never get cancelled in division. They only get cut in multiplication. Also, here we see that we can turn division into simple multiplication. In case, we have to divide a number by another number, what we can do is to simply multiply the first number by the inverse of the second. This rule could also be directly used to solve questions like this. The answer obtained would have remained the same. Lastly, it is good to convert your answer from improper fraction to mixed fraction even if it is not mentioned in the question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

