Answer
Verified
494.1k+ views
Hint: At first try to analyse the expression then use distributive law which states that $a\times \left( b+c \right)=a\times b+a\times c$ and try to define and give an example and then use to get the results instead of doing the products.
Complete step-by-step solution:
In the question we have to solve the expression $625\times \left( -35 \right)+\left( -625 \right)\times 65$ using suitable properties.
Now to find the value of the expression we will use the distributive property which lets one multiply a sum by multiplying each addend separately and then add the products. It is represented as$a\times \left( b+c \right)=a\times b+a\times c$.
Let’s take an example of the distributive which is as follows,
$3(2+4)=3\times 2+3\times 4$
In LHS, $3(2+4)$ is equal to \[3\times 6\] which becomes \[18\]. So here LHS is \[18\].
In RHS, $3\times 2+3\times 4$ can be written as $6+12$ which equals $18$. So here RHS is $18$.
Hence LHS=RHS so the property satisfies and hence we can use it in expression to solve it.
Now in the expression we are given that,
$625\times \left( -35 \right)+\left( -625 \right)\times 65\ldots \ldots (1)$
which can be expressed as,
$625\times \left( -35 \right)+625\times \left( -65 \right)\ldots \ldots (2)$
As we know $\left( -a \right)\times b=a\times \left( -b \right)$. Hence we can write expressions on (1) and (2).
So now we will use the distributive property which is
$a\times \left( b+c \right)=a\times b+a\times c$
where we will put a = 625, b = -35, c = -65 in expression (2) to get,
$\begin{align}
& 625\times \left( -35 \right)+625\times \left( -65 \right) \\
& =625\times \left( \left( -35 \right)+\left( -65 \right) \right) \\
& =625\times \left( -100 \right) \\
& =-62500 \\
\end{align}$
So the value of expression by using the distributive law is -62500.
Hence, the answer is -62500.
Note: In these types of problems instead of thinking they directly find the value of the two products differently and add them up. The distributive law or any other laws such as associative where $a\times \left( b+c \right)=a\times b+a\times c$ is made to ease down calculations instead doing the hectic work. Hence the student shall learn all the laws by heart.
Complete step-by-step solution:
In the question we have to solve the expression $625\times \left( -35 \right)+\left( -625 \right)\times 65$ using suitable properties.
Now to find the value of the expression we will use the distributive property which lets one multiply a sum by multiplying each addend separately and then add the products. It is represented as$a\times \left( b+c \right)=a\times b+a\times c$.
Let’s take an example of the distributive which is as follows,
$3(2+4)=3\times 2+3\times 4$
In LHS, $3(2+4)$ is equal to \[3\times 6\] which becomes \[18\]. So here LHS is \[18\].
In RHS, $3\times 2+3\times 4$ can be written as $6+12$ which equals $18$. So here RHS is $18$.
Hence LHS=RHS so the property satisfies and hence we can use it in expression to solve it.
Now in the expression we are given that,
$625\times \left( -35 \right)+\left( -625 \right)\times 65\ldots \ldots (1)$
which can be expressed as,
$625\times \left( -35 \right)+625\times \left( -65 \right)\ldots \ldots (2)$
As we know $\left( -a \right)\times b=a\times \left( -b \right)$. Hence we can write expressions on (1) and (2).
So now we will use the distributive property which is
$a\times \left( b+c \right)=a\times b+a\times c$
where we will put a = 625, b = -35, c = -65 in expression (2) to get,
$\begin{align}
& 625\times \left( -35 \right)+625\times \left( -65 \right) \\
& =625\times \left( \left( -35 \right)+\left( -65 \right) \right) \\
& =625\times \left( -100 \right) \\
& =-62500 \\
\end{align}$
So the value of expression by using the distributive law is -62500.
Hence, the answer is -62500.
Note: In these types of problems instead of thinking they directly find the value of the two products differently and add them up. The distributive law or any other laws such as associative where $a\times \left( b+c \right)=a\times b+a\times c$ is made to ease down calculations instead doing the hectic work. Hence the student shall learn all the laws by heart.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE