Answer
Verified
426.3k+ views
Hint: In the problem we need to multiply the given two terms. Here we can follow the FOIL rule to multiply the given terms. So, we will first multiply the individual terms according to the FOIL rule which is nothing but First, Outside, Inner, Last terms. After multiplying the term individually, we will add all the calculated values to get the required result.
Complete step by step solution:
Given that, $\left( 2x+1 \right)\left( x+3 \right)$.
First terms in the given equation are $2x$, $x$. Multiplying the both the terms, then we will get
$2x\times x=2{{x}^{2}}...\left( \text{i} \right)$
Outside terms in the given equation are $2x$, $3$. Multiplying the both the terms, then we will get
$2x\times 3=6x...\left( \text{ii} \right)$
Inner terms in the given equation are $1$, $x$. Multiplying the both the terms, then we will get
$1\times x=x....\left( \text{iii} \right)$
Last terms in the given equation are $1$, $3$. Multiplying the both the terms, then we will get
$1\times 3=3....\left( \text{iv} \right)$
Now the product of the given equation is the algebraic sum of the products obtained by the FOIL rule. From equations $\left( \text{i} \right)$, $\left( \text{ii} \right)$, $\left( \text{iii} \right)$, $\left( \text{iv} \right)$ we can write
$\left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+6x+x+3$
Simplifying the above equation, then we will get
$\Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+7x+3$
Hence the product of the equation $\left( 2x+1 \right)\left( x+3 \right)$ is $2{{x}^{2}}+7x+3$.
Note: We can directly multiply the two terms and use the distribution law of multiplication over the addition and subtraction, then we will get the required result.
Given $\left( 2x+1 \right)\left( x+3 \right)$.
Multiplying each term individually, then we will get
$\left( 2x+1 \right)\left( x+3 \right)=2x\left( x+3 \right)+1\left( x+3 \right)$
Using the distribution law of multiplication over the subtraction, then we will get
$\begin{align}
& \left( 2x+1 \right)\left( x+3 \right)=2x\times x+2x\times 3+1\times x+1\times 3 \\
& \Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+6x+x+3 \\
& \Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+7x+3 \\
\end{align}$
From both the methods we got the same result.
Complete step by step solution:
Given that, $\left( 2x+1 \right)\left( x+3 \right)$.
First terms in the given equation are $2x$, $x$. Multiplying the both the terms, then we will get
$2x\times x=2{{x}^{2}}...\left( \text{i} \right)$
Outside terms in the given equation are $2x$, $3$. Multiplying the both the terms, then we will get
$2x\times 3=6x...\left( \text{ii} \right)$
Inner terms in the given equation are $1$, $x$. Multiplying the both the terms, then we will get
$1\times x=x....\left( \text{iii} \right)$
Last terms in the given equation are $1$, $3$. Multiplying the both the terms, then we will get
$1\times 3=3....\left( \text{iv} \right)$
Now the product of the given equation is the algebraic sum of the products obtained by the FOIL rule. From equations $\left( \text{i} \right)$, $\left( \text{ii} \right)$, $\left( \text{iii} \right)$, $\left( \text{iv} \right)$ we can write
$\left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+6x+x+3$
Simplifying the above equation, then we will get
$\Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+7x+3$
Hence the product of the equation $\left( 2x+1 \right)\left( x+3 \right)$ is $2{{x}^{2}}+7x+3$.
Note: We can directly multiply the two terms and use the distribution law of multiplication over the addition and subtraction, then we will get the required result.
Given $\left( 2x+1 \right)\left( x+3 \right)$.
Multiplying each term individually, then we will get
$\left( 2x+1 \right)\left( x+3 \right)=2x\left( x+3 \right)+1\left( x+3 \right)$
Using the distribution law of multiplication over the subtraction, then we will get
$\begin{align}
& \left( 2x+1 \right)\left( x+3 \right)=2x\times x+2x\times 3+1\times x+1\times 3 \\
& \Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+6x+x+3 \\
& \Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+7x+3 \\
\end{align}$
From both the methods we got the same result.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it