
How do you find the product $ (4x + 5)(4x + 5)? $
Answer
527.1k+ views
Hint: Here we are given the two binomial terms to find the product of it. Binomial terms are the polynomial equation with two terms which are usually joined with the plus or minus sign. Will apply the product properties and find the resultant value.
Complete step by step solution:
Take the given expression: $ (4x + 5)(4x + 5) $
Now applying the product of two binomials, the above expression can be written as –
$ = 4x(4x + 5) + 5(4x + 5) $
Simplify the above expression finding the product of the terms inside the bracket. When there is a positive term outside the bracket then the sign of the terms inside the brackets changes when opened.
$ = 4x(4x) + 4x(5) + 5(4x) + 5(5) $
Simplify the above expression by using the property of power and exponent which states that when bases are the same then the powers are added.
$ = 16{x^2} + 20x + 20x + 25 $
Simplify the above expression combining the like terms. Like terms are the terms with the same variable and its power.
$ = 16{x^2} + \underline {20x + 20x} + 25 $
Simplify the above expression –
$ = 16{x^2} + 40x + 25 $
This is the required solution.
So, the correct answer is “$16{x^2} + 40x + 25 $”.
Note: The power is used to express mathematical equations in the short form; it is an expression that represents the repeated multiplication of the same factor. For example - $ 2 \times 2 \times 2 $ can be expressed as $ {2^3} $ . Here, the number two is called the base and the exponent represents the number of times the base is used as the factor.
Complete step by step solution:
Take the given expression: $ (4x + 5)(4x + 5) $
Now applying the product of two binomials, the above expression can be written as –
$ = 4x(4x + 5) + 5(4x + 5) $
Simplify the above expression finding the product of the terms inside the bracket. When there is a positive term outside the bracket then the sign of the terms inside the brackets changes when opened.
$ = 4x(4x) + 4x(5) + 5(4x) + 5(5) $
Simplify the above expression by using the property of power and exponent which states that when bases are the same then the powers are added.
$ = 16{x^2} + 20x + 20x + 25 $
Simplify the above expression combining the like terms. Like terms are the terms with the same variable and its power.
$ = 16{x^2} + \underline {20x + 20x} + 25 $
Simplify the above expression –
$ = 16{x^2} + 40x + 25 $
This is the required solution.
So, the correct answer is “$16{x^2} + 40x + 25 $”.
Note: The power is used to express mathematical equations in the short form; it is an expression that represents the repeated multiplication of the same factor. For example - $ 2 \times 2 \times 2 $ can be expressed as $ {2^3} $ . Here, the number two is called the base and the exponent represents the number of times the base is used as the factor.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

