
Find the principal value of each of the following:
\[{{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\]
Answer
535.5k+ views
Hint: To solve the question given above, first we will draw the rough graph of \[y={{\tan }^{-1}}x\] and we will determine the nature of the graph. Then we will find the value of \[\cos \dfrac{2\pi }{3}\]. Then we will put this in the term \[{{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\] and then we will find its value.
Complete step-by-step solution-
Before solving the question, we must know what is the nature of the graph \[y={{\tan }^{-1}}x\]. For determining the nature of the graph, we will draw the graph. Thus, we have:
From the above graph, we can say that the inverse trigonometric function \[{{\tan }^{-1}}x\] as an odd function then, we have the following relation:
\[\Rightarrow f\left( -x \right)=-f\left( x \right)\]
Now, the term of which we have to find the value is \[{{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\]. Let its value by y. Thus, we have the following equation:
\[y={{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\] --------- (1)
We will first find out the value of \[\cos \dfrac{2\pi }{3}\]. Let its value be ‘p’. Thus, we have,
\[\Rightarrow y={{\tan }^{-1}}\left( p \right)\] -------- (2)
Now, we will find the value of p. Thus, we have:
\[\begin{align}
& p=\cos \left( \dfrac{2\pi }{3} \right) \\
& \Rightarrow p=\cos \left( \pi -\dfrac{\pi }{3} \right) \\
\end{align}\]
Now, we will use the identity \[\cos \left( \pi -x \right)=-\cos x\] in the above equation. In our case, \[x=\dfrac{\pi }{3}\]. So, we have:
\[\Rightarrow p=-\cos \dfrac{\pi }{3}\]
The value of \[\cos \dfrac{\pi }{3}\] is \[\dfrac{1}{2}\]. So, we will get:
\[\Rightarrow p=-\dfrac{1}{2}\] ----- (3)
Now, we will put the value of p from (3) into (1). Thus, because \[{{\tan }^{-1}}x\] is an odd function. So, we will get:
\[\Rightarrow y={{\tan }^{-1}}\left( 1 \right)\] --------- (4)
We know that \[\tan \dfrac{\pi }{4}=1\]. So, \[\dfrac{\pi }{4}={{\tan }^{-1}}\left( 1 \right)\]. Thus, we will get:
\[\Rightarrow y=-\left( \dfrac{\pi }{4} \right)\]
\[\Rightarrow y=-\dfrac{\pi }{4}\] ------- (5)
From (1) and (5), we have:
\[{{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)=-\dfrac{\pi }{4}\].
Note: We can also solve the above question by following method, we know that:
\[y={{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\]
The value of \[\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\]. So, we have, \[y={{\tan }^{-1}}\left( -1 \right)\].
We know that, \[\tan \dfrac{\pi }{4}=1\]. So, we will get:
\[y={{\tan }^{-1}}\left( -\tan \dfrac{\pi }{4} \right)\]
Now, we know that \[-\tan \theta \] can be written as \[\left( -\tan \theta \right)\].
So, we will get:
\[y={{\tan }^{-1}}\left( \tan \left( \dfrac{-\pi }{4} \right) \right)\]
Now, we will use the following identity:
\[{{\tan }^{-1}}\left( \tan x \right)=x\] (if \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}\])
Thus, we will get:
\[y=\dfrac{-\pi }{4}\]
Complete step-by-step solution-
Before solving the question, we must know what is the nature of the graph \[y={{\tan }^{-1}}x\]. For determining the nature of the graph, we will draw the graph. Thus, we have:

From the above graph, we can say that the inverse trigonometric function \[{{\tan }^{-1}}x\] as an odd function then, we have the following relation:
\[\Rightarrow f\left( -x \right)=-f\left( x \right)\]
Now, the term of which we have to find the value is \[{{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\]. Let its value by y. Thus, we have the following equation:
\[y={{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\] --------- (1)
We will first find out the value of \[\cos \dfrac{2\pi }{3}\]. Let its value be ‘p’. Thus, we have,
\[\Rightarrow y={{\tan }^{-1}}\left( p \right)\] -------- (2)
Now, we will find the value of p. Thus, we have:
\[\begin{align}
& p=\cos \left( \dfrac{2\pi }{3} \right) \\
& \Rightarrow p=\cos \left( \pi -\dfrac{\pi }{3} \right) \\
\end{align}\]
Now, we will use the identity \[\cos \left( \pi -x \right)=-\cos x\] in the above equation. In our case, \[x=\dfrac{\pi }{3}\]. So, we have:
\[\Rightarrow p=-\cos \dfrac{\pi }{3}\]
The value of \[\cos \dfrac{\pi }{3}\] is \[\dfrac{1}{2}\]. So, we will get:
\[\Rightarrow p=-\dfrac{1}{2}\] ----- (3)
Now, we will put the value of p from (3) into (1). Thus, because \[{{\tan }^{-1}}x\] is an odd function. So, we will get:
\[\Rightarrow y={{\tan }^{-1}}\left( 1 \right)\] --------- (4)
We know that \[\tan \dfrac{\pi }{4}=1\]. So, \[\dfrac{\pi }{4}={{\tan }^{-1}}\left( 1 \right)\]. Thus, we will get:
\[\Rightarrow y=-\left( \dfrac{\pi }{4} \right)\]
\[\Rightarrow y=-\dfrac{\pi }{4}\] ------- (5)
From (1) and (5), we have:
\[{{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)=-\dfrac{\pi }{4}\].
Note: We can also solve the above question by following method, we know that:
\[y={{\tan }^{-1}}\left( 2\cos \dfrac{2\pi }{3} \right)\]
The value of \[\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\]. So, we have, \[y={{\tan }^{-1}}\left( -1 \right)\].
We know that, \[\tan \dfrac{\pi }{4}=1\]. So, we will get:
\[y={{\tan }^{-1}}\left( -\tan \dfrac{\pi }{4} \right)\]
Now, we know that \[-\tan \theta \] can be written as \[\left( -\tan \theta \right)\].
So, we will get:
\[y={{\tan }^{-1}}\left( \tan \left( \dfrac{-\pi }{4} \right) \right)\]
Now, we will use the following identity:
\[{{\tan }^{-1}}\left( \tan x \right)=x\] (if \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}\])
Thus, we will get:
\[y=\dfrac{-\pi }{4}\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
