
Find the principal value of each of the following
\[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]
Answer
588k+ views
Hint: let us consider the y as given inverse trigonometric function and then we will get the value of \[\tan y\] and if \[\tan y\] is positive then the principal value will be \[\theta \]. The principal value of \[\tan \theta \] lies between \[-\dfrac{\pi }{2}\]and \[\dfrac{\pi }{2}\]
Complete step-by-step answer:
Let y= \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\tan y=\cos \dfrac{\pi }{2}=0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since zero is also considered as positive, principal value is \[\theta \]
We know the principal value of \[{{\tan }^{-1}}\]is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]
Hence the principal value of \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]is
\[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Therefore,
\[={{\tan }^{-1}}\left( \tan \left( 0 \right) \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=0\]
Note: The general formula for principal value of \[{{\tan }^{-1}}\left( \cot \theta \right)=\dfrac{\pi }{2}-\theta \] if and only if \[\left( 0,\pi \right)\]. The principal value of \[\theta \] for any given inverse function should lie within its range. The range of inverse tangent function or arc tangent function is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]. So the principle of \[\theta \] for inverse tangent function always lies between \[-\dfrac{\pi }{2}\]and \[\dfrac{\pi }{2}\].
Complete step-by-step answer:
Let y= \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\tan y=\cos \dfrac{\pi }{2}=0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since zero is also considered as positive, principal value is \[\theta \]
We know the principal value of \[{{\tan }^{-1}}\]is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]
Hence the principal value of \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]is
\[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Therefore,
\[={{\tan }^{-1}}\left( \tan \left( 0 \right) \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=0\]
Note: The general formula for principal value of \[{{\tan }^{-1}}\left( \cot \theta \right)=\dfrac{\pi }{2}-\theta \] if and only if \[\left( 0,\pi \right)\]. The principal value of \[\theta \] for any given inverse function should lie within its range. The range of inverse tangent function or arc tangent function is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]. So the principle of \[\theta \] for inverse tangent function always lies between \[-\dfrac{\pi }{2}\]and \[\dfrac{\pi }{2}\].
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

