
Find the principal value of each of the following
\[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]
Answer
606.9k+ views
Hint: let us consider the y as given inverse trigonometric function and then we will get the value of \[\tan y\] and if \[\tan y\] is positive then the principal value will be \[\theta \]. The principal value of \[\tan \theta \] lies between \[-\dfrac{\pi }{2}\]and \[\dfrac{\pi }{2}\]
Complete step-by-step answer:
Let y= \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\tan y=\cos \dfrac{\pi }{2}=0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since zero is also considered as positive, principal value is \[\theta \]
We know the principal value of \[{{\tan }^{-1}}\]is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]
Hence the principal value of \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]is
\[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Therefore,
\[={{\tan }^{-1}}\left( \tan \left( 0 \right) \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=0\]
Note: The general formula for principal value of \[{{\tan }^{-1}}\left( \cot \theta \right)=\dfrac{\pi }{2}-\theta \] if and only if \[\left( 0,\pi \right)\]. The principal value of \[\theta \] for any given inverse function should lie within its range. The range of inverse tangent function or arc tangent function is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]. So the principle of \[\theta \] for inverse tangent function always lies between \[-\dfrac{\pi }{2}\]and \[\dfrac{\pi }{2}\].
Complete step-by-step answer:
Let y= \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\tan y=\cos \dfrac{\pi }{2}=0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since zero is also considered as positive, principal value is \[\theta \]
We know the principal value of \[{{\tan }^{-1}}\]is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]
Hence the principal value of \[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]is
\[{{\tan }^{-1}}\left( \cos \dfrac{\pi }{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Therefore,
\[={{\tan }^{-1}}\left( \tan \left( 0 \right) \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=0\]
Note: The general formula for principal value of \[{{\tan }^{-1}}\left( \cot \theta \right)=\dfrac{\pi }{2}-\theta \] if and only if \[\left( 0,\pi \right)\]. The principal value of \[\theta \] for any given inverse function should lie within its range. The range of inverse tangent function or arc tangent function is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]. So the principle of \[\theta \] for inverse tangent function always lies between \[-\dfrac{\pi }{2}\]and \[\dfrac{\pi }{2}\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

