
Find the principal value of \[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]
Answer
588k+ views
Hint: let us consider the y as given inverse trigonometric function and then we will get the value of \[\cos y\] and if \[\cos y\] is negative then the principal value will be \[\pi -\theta \]. The principal value of \[\cos \theta \] lies between 0 and \[\pi \]
Complete step-by-step answer:
Let y=\[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since \[\dfrac{-\sqrt{3}}{2}\]is negative, principal value of \[\theta \] is \[\pi -\theta \]
\[\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}=\cos \left( \pi -\dfrac{\pi }{6} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
We know the principal value of \[{{\cos }^{-1}}\]is \[\left[ 0,\pi \right]\]
Hence the principal value of \[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]is
\[\pi -\dfrac{\pi }{6}=\dfrac{6\pi -\pi }{6}=\dfrac{5\pi }{6}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The general formula for principal value of \[{{\cos }^{-1}}\left( \sin \theta \right)=\dfrac{\pi }{2}-\theta \] if and only if \[\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]. The principal value of \[\theta \] for any given inverse function should lie within its range. The range of inverse cos function or arc cos function is \[\left[ 0,\pi \right]\]. So the principle of \[\theta \] for inverse cosine function always lies between 0 and \[\pi \].
Complete step-by-step answer:
Let y=\[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since \[\dfrac{-\sqrt{3}}{2}\]is negative, principal value of \[\theta \] is \[\pi -\theta \]
\[\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}=\cos \left( \pi -\dfrac{\pi }{6} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
We know the principal value of \[{{\cos }^{-1}}\]is \[\left[ 0,\pi \right]\]
Hence the principal value of \[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]is
\[\pi -\dfrac{\pi }{6}=\dfrac{6\pi -\pi }{6}=\dfrac{5\pi }{6}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The general formula for principal value of \[{{\cos }^{-1}}\left( \sin \theta \right)=\dfrac{\pi }{2}-\theta \] if and only if \[\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]. The principal value of \[\theta \] for any given inverse function should lie within its range. The range of inverse cos function or arc cos function is \[\left[ 0,\pi \right]\]. So the principle of \[\theta \] for inverse cosine function always lies between 0 and \[\pi \].
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

