
Find the principal value of \[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]
Answer
606.3k+ views
Hint: let us consider the y as given inverse trigonometric function and then we will get the value of \[\cos y\] and if \[\cos y\] is negative then the principal value will be \[\pi -\theta \]. The principal value of \[\cos \theta \] lies between 0 and \[\pi \]
Complete step-by-step answer:
Let y=\[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since \[\dfrac{-\sqrt{3}}{2}\]is negative, principal value of \[\theta \] is \[\pi -\theta \]
\[\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}=\cos \left( \pi -\dfrac{\pi }{6} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
We know the principal value of \[{{\cos }^{-1}}\]is \[\left[ 0,\pi \right]\]
Hence the principal value of \[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]is
\[\pi -\dfrac{\pi }{6}=\dfrac{6\pi -\pi }{6}=\dfrac{5\pi }{6}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The general formula for principal value of \[{{\cos }^{-1}}\left( \sin \theta \right)=\dfrac{\pi }{2}-\theta \] if and only if \[\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]. The principal value of \[\theta \] for any given inverse function should lie within its range. The range of inverse cos function or arc cos function is \[\left[ 0,\pi \right]\]. So the principle of \[\theta \] for inverse cosine function always lies between 0 and \[\pi \].
Complete step-by-step answer:
Let y=\[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Since \[\dfrac{-\sqrt{3}}{2}\]is negative, principal value of \[\theta \] is \[\pi -\theta \]
\[\Rightarrow \cos y=\dfrac{-\sqrt{3}}{2}=\cos \left( \pi -\dfrac{\pi }{6} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
We know the principal value of \[{{\cos }^{-1}}\]is \[\left[ 0,\pi \right]\]
Hence the principal value of \[{{\cos }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right)\]is
\[\pi -\dfrac{\pi }{6}=\dfrac{6\pi -\pi }{6}=\dfrac{5\pi }{6}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The general formula for principal value of \[{{\cos }^{-1}}\left( \sin \theta \right)=\dfrac{\pi }{2}-\theta \] if and only if \[\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]. The principal value of \[\theta \] for any given inverse function should lie within its range. The range of inverse cos function or arc cos function is \[\left[ 0,\pi \right]\]. So the principle of \[\theta \] for inverse cosine function always lies between 0 and \[\pi \].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

