
How do you find the power series representation of $\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}$ ?
Answer
563.1k+ views
Hint: To solve the above question we will first write the expansion of the term ${{\left( 1-x \right)}^{-1}}$as ${{\left( 1-x \right)}^{-1}}=1+x+{{x}^{2}}+.......$ and since we can write ${{\left( 1-x \right)}^{-1}}$ as $\dfrac{1}{\left( 1-x \right)}$ so, we will differentiate the obtained expansion to obtain the square in the denominator and then we will multiply with x on both the side and then we will get the expansion of the terms $\dfrac{1}{{{\left( 1-x \right)}^{2}}}and\dfrac{x}{{{\left( 1-x \right)}^{2}}}$ both and hence, to obtain the expansion of $\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}$ we will add the expansion of $\dfrac{1}{{{\left( 1-x \right)}^{2}}}and\dfrac{x}{{{\left( 1-x \right)}^{2}}}$ both.
Complete step by step answer:
We can see from question that we have to write the power series representation of $\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}$, which means we have to write the expansion of $\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}$.
Since, we know that the expansion of ${{\left( 1-x \right)}^{-1}}$ is given as ${{\left( 1-x \right)}^{-1}}=1+x+{{x}^{2}}+.......\text{up to infinite terms}\text{.}$
And, we can write ${{\left( 1-x \right)}^{-1}}$ as $\dfrac{1}{\left( 1-x \right)}$.
So, we will get:
$\Rightarrow \dfrac{1}{\left( 1-x \right)}=1+x+{{x}^{2}}+.......\text{up to infinite terms}\text{.}$
Now, after differentiating both the side of the above expansion we will get:
$\Rightarrow \dfrac{d\left( \dfrac{1}{\left( 1-x \right)} \right)}{dx}=\dfrac{d\left( 1+x+{{x}^{2}}+....... \right)}{dx}$
Now, we know that $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$, and $\dfrac{d\left( A+B \right)}{dx}=\dfrac{dA}{dx}+\dfrac{dB}{dx}$
\[\Rightarrow -1\times {{\left( 1-x \right)}^{-1-1}}\times \left( -1 \right)=\dfrac{d\left( 1 \right)}{dx}+\dfrac{dx}{dx}+\dfrac{d{{x}^{2}}}{dx}+\dfrac{d{{x}^{3}}}{dx}+......\]
$\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}=1+2x+3{{x}^{2}}+......$
$\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}=1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{. ----}\left( 1 \right)$
Now, after multiplying both side of the above equation (1) by x, we will get:
$\Rightarrow \dfrac{x}{{{\left( 1-x \right)}^{2}}}=x\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)$
$\Rightarrow \dfrac{x}{{{\left( 1-x \right)}^{2}}}=\left( x+2{{x}^{2}}+3{{x}^{3}}-.......\text{up to infinite terms}\text{.} \right)---\left( 2 \right)$
Now, after adding equation (1) and (2) we will get:
$\begin{align}
& \Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right) \\
& +\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right) \\
\end{align}$
Now, after simplifying the LHS , we will get:
\[\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)+\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right)\]
\[\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)+\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right)\]
Now, after adding the corresponding similar term of the equation, we will get:
\[\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+3x+5{{x}^{2}}+7{{x}^{3}}.......\text{up to infinite terms} \right)\]
Hence, the power series representation of $\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}$ is given as: \[\left( 1+3x+5{{x}^{2}}+7{{x}^{3}}.......\text{up to infinite terms} \right)\]
This is the required solution.
Note: When we add two series which consists of the infinite terms then we add coefficient terms with the same power terms. Also, note that that expansion of ${{\left( 1+x \right)}^{n}}$, where n is negative or fraction is given as: ${{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+......$.
Complete step by step answer:
We can see from question that we have to write the power series representation of $\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}$, which means we have to write the expansion of $\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}$.
Since, we know that the expansion of ${{\left( 1-x \right)}^{-1}}$ is given as ${{\left( 1-x \right)}^{-1}}=1+x+{{x}^{2}}+.......\text{up to infinite terms}\text{.}$
And, we can write ${{\left( 1-x \right)}^{-1}}$ as $\dfrac{1}{\left( 1-x \right)}$.
So, we will get:
$\Rightarrow \dfrac{1}{\left( 1-x \right)}=1+x+{{x}^{2}}+.......\text{up to infinite terms}\text{.}$
Now, after differentiating both the side of the above expansion we will get:
$\Rightarrow \dfrac{d\left( \dfrac{1}{\left( 1-x \right)} \right)}{dx}=\dfrac{d\left( 1+x+{{x}^{2}}+....... \right)}{dx}$
Now, we know that $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$, and $\dfrac{d\left( A+B \right)}{dx}=\dfrac{dA}{dx}+\dfrac{dB}{dx}$
\[\Rightarrow -1\times {{\left( 1-x \right)}^{-1-1}}\times \left( -1 \right)=\dfrac{d\left( 1 \right)}{dx}+\dfrac{dx}{dx}+\dfrac{d{{x}^{2}}}{dx}+\dfrac{d{{x}^{3}}}{dx}+......\]
$\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}=1+2x+3{{x}^{2}}+......$
$\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}=1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{. ----}\left( 1 \right)$
Now, after multiplying both side of the above equation (1) by x, we will get:
$\Rightarrow \dfrac{x}{{{\left( 1-x \right)}^{2}}}=x\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)$
$\Rightarrow \dfrac{x}{{{\left( 1-x \right)}^{2}}}=\left( x+2{{x}^{2}}+3{{x}^{3}}-.......\text{up to infinite terms}\text{.} \right)---\left( 2 \right)$
Now, after adding equation (1) and (2) we will get:
$\begin{align}
& \Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right) \\
& +\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right) \\
\end{align}$
Now, after simplifying the LHS , we will get:
\[\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)+\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right)\]
\[\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)+\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right)\]
Now, after adding the corresponding similar term of the equation, we will get:
\[\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+3x+5{{x}^{2}}+7{{x}^{3}}.......\text{up to infinite terms} \right)\]
Hence, the power series representation of $\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}$ is given as: \[\left( 1+3x+5{{x}^{2}}+7{{x}^{3}}.......\text{up to infinite terms} \right)\]
This is the required solution.
Note: When we add two series which consists of the infinite terms then we add coefficient terms with the same power terms. Also, note that that expansion of ${{\left( 1+x \right)}^{n}}$, where n is negative or fraction is given as: ${{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+......$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

