
How do you find the power series for \[f\left( x \right)=\int{\dfrac{\ln \left( 1+t \right)}{t}}dt~\] from \[\left[ 0,x \right]\] and determine its radius of convergence?
Answer
541.8k+ views
Hint: In order to find the solution to the given question, that is to find the power series for \[f\left( x \right)=\int{\dfrac{\ln \left( 1+t \right)}{t}}dt~\] from \[\left[ 0,x \right]\] and determine its radius of convergence, we will use the Maclaurin Series of \[\ln \left( 1+x \right)\] then replace \[x\] with \[t\] to determine the value of \[\dfrac{\ln \left( 1+t \right)}{t}\] and find the power series with the help of it. And to determine radius of convergence use the d'Alembert's ratio test.
Complete step by step solution:
According to the question, given function in the question is as follows:
\[f\left( x \right)=\int{\dfrac{\ln \left( 1+t \right)}{t}}dt~\]
We are going to start with the well-known Maclaurin Series for \[\ln \left( 1+x \right)\]:
\[\ln \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...\]
Now replace the variable \[x\] in the above series by \[t\] then we get:
\[\Rightarrow \ln \left( 1+t \right)=t-\dfrac{{{t}^{2}}}{2}+\dfrac{{{t}^{3}}}{3}-\dfrac{{{t}^{4}}}{4}+...\]
So, now we have the value of \[\dfrac{\ln \left( 1+t \right)}{t}\] as:
\[\Rightarrow \dfrac{\ln \left( 1+t \right)}{t}=\dfrac{1}{t}\left\{ t-\dfrac{{{t}^{2}}}{2}+\dfrac{{{t}^{3}}}{3}-\dfrac{{{t}^{4}}}{4}+... \right\}\]
\[\Rightarrow \dfrac{\ln \left( 1+t \right)}{t}=1-\dfrac{t}{2}+\dfrac{{{t}^{2}}}{3}-\dfrac{{{t}^{3}}}{4}+...\]
So, we can substitute the above value in the given function and get:
\[\Rightarrow f\left( x \right)=\int\limits_{0}^{x}{\dfrac{\ln \left( 1+t \right)}{t}}dt\]
\[\Rightarrow f\left( x \right)=\int\limits_{0}^{x}{\left\{ 1-\dfrac{t}{2}+\dfrac{{{t}^{2}}}{3}-\dfrac{{{t}^{3}}}{4}+... \right\}}dt\]
\[\Rightarrow f\left( x \right)=\left[ t-\dfrac{\dfrac{{{t}^{2}}}{2}}{2}+\dfrac{\dfrac{{{t}^{3}}}{3}}{3}-\dfrac{\dfrac{{{t}^{4}}}{4}}{4}+... \right]_{0}^{x}\]
\[\Rightarrow f\left( x \right)=\left[ t-\dfrac{{{t}^{2}}}{4}+\dfrac{{{t}^{3}}}{9}-\dfrac{{{t}^{4}}}{16}+... \right]_{0}^{x}\]
\[\Rightarrow f\left( x \right)=x-\dfrac{{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{9}-\dfrac{{{x}^{4}}}{16}+...\]
Therefore, we can write the above equation in the following power series
\[\Rightarrow f\left( x \right)=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}}\]
In order to find the radius of convergence of the derived power series we will apply
d'Alembert's ratio test which states that
Suppose that;
\[S=\sum\limits_{r=1}^{\infty }{{{a}_{n}}}\] and \[L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|\]
Then
if \[L<1\] then the series converges absolutely;
if \[L>1\] then the series is divergent;
if \[L=1\]or the limit fails to exist the test is inconclusive.
Now the given series is as follows;
\[\Rightarrow S=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}}\]
Applying the d'Alembert's ratio test in the above series we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{\left( -1 \right)}^{n+1+1}}{{x}^{n+1}}}{{{\left( n+1 \right)}^{2}}}}{\dfrac{{{\left( -1 \right)}^{n+1}}{{x}^{n}}}{{{n}^{2}}}} \right|\]
After simplifying it further we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\left( -1 \right)x{{n}^{2}}}{{{\left( n+1 \right)}^{2}}} \right|\]
Now open the brackets and solve them, we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| -x \right|\times \left| \dfrac{{{n}^{2}}}{{{n}^{2}}+2n+1}\cdot \dfrac{\dfrac{1}{{{n}^{2}}}}{\dfrac{1}{{{n}^{2}}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| -x \right|\times \left| \dfrac{1}{1+\dfrac{2}{n}+\dfrac{1}{{{n}^{2}}}} \right|\]
After applying the limit, we get:
\[\Rightarrow L=\left| x \right|\]
And we can conclude that the series converges if \[L<1\]
\[\Rightarrow \left| x \right|<1\].
Therefore, \[f\left( x \right)=x-\dfrac{{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{9}-\dfrac{{{x}^{4}}}{16}+...\] or we can say \[f\left( x \right)=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}}\] and its radius of convergence is \[\left| x \right|<1\] or equivalently \[x\in \left( -1,1 \right)\] or \[-1< x< 1\].
Note: Students make mistakes while getting confused with the signs before the terms in the Maclaurin series of \[\ln \left( 1+x \right)\]. They might write it as \[\ln \left( 1+x \right)=x+\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+...\] instead of \[\ln \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...\] which leads to the completely wrong answer.
Complete step by step solution:
According to the question, given function in the question is as follows:
\[f\left( x \right)=\int{\dfrac{\ln \left( 1+t \right)}{t}}dt~\]
We are going to start with the well-known Maclaurin Series for \[\ln \left( 1+x \right)\]:
\[\ln \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...\]
Now replace the variable \[x\] in the above series by \[t\] then we get:
\[\Rightarrow \ln \left( 1+t \right)=t-\dfrac{{{t}^{2}}}{2}+\dfrac{{{t}^{3}}}{3}-\dfrac{{{t}^{4}}}{4}+...\]
So, now we have the value of \[\dfrac{\ln \left( 1+t \right)}{t}\] as:
\[\Rightarrow \dfrac{\ln \left( 1+t \right)}{t}=\dfrac{1}{t}\left\{ t-\dfrac{{{t}^{2}}}{2}+\dfrac{{{t}^{3}}}{3}-\dfrac{{{t}^{4}}}{4}+... \right\}\]
\[\Rightarrow \dfrac{\ln \left( 1+t \right)}{t}=1-\dfrac{t}{2}+\dfrac{{{t}^{2}}}{3}-\dfrac{{{t}^{3}}}{4}+...\]
So, we can substitute the above value in the given function and get:
\[\Rightarrow f\left( x \right)=\int\limits_{0}^{x}{\dfrac{\ln \left( 1+t \right)}{t}}dt\]
\[\Rightarrow f\left( x \right)=\int\limits_{0}^{x}{\left\{ 1-\dfrac{t}{2}+\dfrac{{{t}^{2}}}{3}-\dfrac{{{t}^{3}}}{4}+... \right\}}dt\]
\[\Rightarrow f\left( x \right)=\left[ t-\dfrac{\dfrac{{{t}^{2}}}{2}}{2}+\dfrac{\dfrac{{{t}^{3}}}{3}}{3}-\dfrac{\dfrac{{{t}^{4}}}{4}}{4}+... \right]_{0}^{x}\]
\[\Rightarrow f\left( x \right)=\left[ t-\dfrac{{{t}^{2}}}{4}+\dfrac{{{t}^{3}}}{9}-\dfrac{{{t}^{4}}}{16}+... \right]_{0}^{x}\]
\[\Rightarrow f\left( x \right)=x-\dfrac{{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{9}-\dfrac{{{x}^{4}}}{16}+...\]
Therefore, we can write the above equation in the following power series
\[\Rightarrow f\left( x \right)=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}}\]
In order to find the radius of convergence of the derived power series we will apply
d'Alembert's ratio test which states that
Suppose that;
\[S=\sum\limits_{r=1}^{\infty }{{{a}_{n}}}\] and \[L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|\]
Then
if \[L<1\] then the series converges absolutely;
if \[L>1\] then the series is divergent;
if \[L=1\]or the limit fails to exist the test is inconclusive.
Now the given series is as follows;
\[\Rightarrow S=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}}\]
Applying the d'Alembert's ratio test in the above series we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{\left( -1 \right)}^{n+1+1}}{{x}^{n+1}}}{{{\left( n+1 \right)}^{2}}}}{\dfrac{{{\left( -1 \right)}^{n+1}}{{x}^{n}}}{{{n}^{2}}}} \right|\]
After simplifying it further we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\left( -1 \right)x{{n}^{2}}}{{{\left( n+1 \right)}^{2}}} \right|\]
Now open the brackets and solve them, we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| -x \right|\times \left| \dfrac{{{n}^{2}}}{{{n}^{2}}+2n+1}\cdot \dfrac{\dfrac{1}{{{n}^{2}}}}{\dfrac{1}{{{n}^{2}}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| -x \right|\times \left| \dfrac{1}{1+\dfrac{2}{n}+\dfrac{1}{{{n}^{2}}}} \right|\]
After applying the limit, we get:
\[\Rightarrow L=\left| x \right|\]
And we can conclude that the series converges if \[L<1\]
\[\Rightarrow \left| x \right|<1\].
Therefore, \[f\left( x \right)=x-\dfrac{{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{9}-\dfrac{{{x}^{4}}}{16}+...\] or we can say \[f\left( x \right)=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}}\] and its radius of convergence is \[\left| x \right|<1\] or equivalently \[x\in \left( -1,1 \right)\] or \[-1< x< 1\].
Note: Students make mistakes while getting confused with the signs before the terms in the Maclaurin series of \[\ln \left( 1+x \right)\]. They might write it as \[\ln \left( 1+x \right)=x+\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+...\] instead of \[\ln \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...\] which leads to the completely wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

