
Find the possible values of x if \[\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}\].
Answer
591.3k+ views
Hint: Multiply by 4 in LHS and RHS of the equation \[\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}\] . Now, transform the equation using the formula \[2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\] . Consider A as x and B as 3x. Then, replace \[2{{\cos }^{2}}2x-1\] by \[\cos 4x\]. We know the general solution of \[\cos \theta =0\] is \[\theta =(2n+1)\dfrac{\pi }{2}\] and \[\cos \alpha =-\dfrac{1}{2}\] is \[\alpha =2n\pi \pm \dfrac{2\pi }{3}\]. Solve it further using these general solutions.
Complete step-by-step solution -
According to the question we have the equation, \[\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}\] …………….(1)
Now, multiplying by 4 in LHS and RHS of the equation (1), we get
\[\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}\]
\[\Rightarrow 4.\cos x.\cos 2x.\cos 3x=1\]
\[\Rightarrow 2.\cos x.\cos 3x.(2\cos 2x)=1\] ……………………..(2)
We have to simplify equation (2).
We know the formula, \[2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\] …………(3)
Replacing A by x and B by 3x in equation (3), we get
\[2.\cos x.\cos 3x=\cos \left( x+3x \right)+\cos \left( x-3x \right)\]
\[\Rightarrow 2.\cos x.\cos 3x=\cos \left( x+3x \right)+\cos \left( -2x \right)\] …………………(4)
We know that, \[\cos (-x)=\cos x\]. Replacing x by 2x, we get
\[\cos (-2x)=\cos 2x\] ……………….(5)
Now, using (5), transforming equation (4),
\[\Rightarrow 2.\cos x.\cos 3x=\cos \left( 4x \right)+\cos \left( 2x \right)\] ……………….(6)
Now, using (6), transforming equation (2),
\[\{\cos \left( 4x \right)+\cos \left( 2x \right)\}2\cos 2x=1\]
\[\Rightarrow 2\cos 4x.\cos 2x+2{{\cos }^{2}}2x=1\]
\[\Rightarrow 2\cos 4x.\cos 2x+2{{\cos }^{2}}2x-1=0\] ………………….(7)
We know the formula, \[2{{\cos }^{2}}x-1=\cos 2x\] .
Now, replacing x by 2x in the above formula, we get
\[2{{\cos }^{2}}2x-1=\cos 4x\] ……………..(8)
Now, using (8), transforming equation (7), we get
\[\begin{align}
& \Rightarrow 2\cos 4x.\cos 2x+\cos 4x=0 \\
& \Rightarrow \cos 4x(2\cos 2x+1)=0 \\
\end{align}\]
\[\cos 4x=0\] or \[2\cos 2x+1=0\] .
We know that the general solution of \[\cos \theta =0\] is \[\theta =(2n+1)\dfrac{\pi }{2}\] .
\[\cos 4x=0\]
Now, using the general solution of \[\cos \theta =0\] , we get
\[\begin{align}
& \Rightarrow 4x=(2n+1)\dfrac{\pi }{2} \\
& \Rightarrow x=(2n+1)\dfrac{\pi }{8} \\
\end{align}\]
\[\begin{align}
& 2\cos 2x+1=0 \\
& \Rightarrow 2\cos 2x=-1 \\
& \Rightarrow \cos 2x=\dfrac{-1}{2} \\
\end{align}\]
We know that, \[\cos \left( \pi -\dfrac{\pi }{3} \right)=\cos \left( \dfrac{2\pi }{3} \right)=-\dfrac{1}{2}\]
We have to find the general solution of \[\cos \theta =-\dfrac{1}{2}\] .
\[\begin{align}
& \cos \theta =\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \Rightarrow cos\theta =\cos \left( \dfrac{2\pi }{3} \right) \\
\end{align}\]
\[\Rightarrow \theta =2n\pi \pm \dfrac{2\pi }{3}\]
Now, we have the general solution of \[\cos \theta =-\dfrac{1}{2}\] equal to \[\theta =2n\pi \pm \dfrac{2\pi }{3}\] .
Now, using the general solution of \[\cos \theta =-\dfrac{1}{2}\] , we get
\[\begin{align}
& \Rightarrow 2\cos 2x=-1 \\
& \Rightarrow \cos 2x=\dfrac{-1}{2} \\
\end{align}\]
Replacing 2x by \[\theta \] in the above equation, we get
\[\cos \theta =-\dfrac{1}{2}\]
we have the general solution of \[\cos \theta =-\dfrac{1}{2}\] equal to \[\theta =2n\pi \pm \dfrac{2\pi }{3}\]……..(9)
Now, replacing \[\theta \] by 2x in equation (9), we get
\[\begin{align}
& \Rightarrow 2x=2n\pi \pm \dfrac{2\pi }{3} \\
& \Rightarrow x=n\pi \pm \dfrac{\pi }{3} \\
\end{align}\]
So, \[x=n\pi \pm \dfrac{\pi }{3}\] or \[x=(2n+1)\dfrac{\pi }{8}\].
Note: In this question, one can consider 2x as A and 3x as B and then transform the equation \[4\cos x.\cos 2x.\cos 3x=1\] using the formula \[2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\] . If we do so, then we will get one 5x term due to which our equation will become complex to solve. So, this approach is wrong for this question. Therefore, we have to consider x as A and 3x as B and then transform \[4\cos x.\cos 2x.\cos 3x=1\] the equation using the formula \[2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\] .
Complete step-by-step solution -
According to the question we have the equation, \[\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}\] …………….(1)
Now, multiplying by 4 in LHS and RHS of the equation (1), we get
\[\cos x.\cos 2x.\cos 3x=\dfrac{1}{4}\]
\[\Rightarrow 4.\cos x.\cos 2x.\cos 3x=1\]
\[\Rightarrow 2.\cos x.\cos 3x.(2\cos 2x)=1\] ……………………..(2)
We have to simplify equation (2).
We know the formula, \[2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\] …………(3)
Replacing A by x and B by 3x in equation (3), we get
\[2.\cos x.\cos 3x=\cos \left( x+3x \right)+\cos \left( x-3x \right)\]
\[\Rightarrow 2.\cos x.\cos 3x=\cos \left( x+3x \right)+\cos \left( -2x \right)\] …………………(4)
We know that, \[\cos (-x)=\cos x\]. Replacing x by 2x, we get
\[\cos (-2x)=\cos 2x\] ……………….(5)
Now, using (5), transforming equation (4),
\[\Rightarrow 2.\cos x.\cos 3x=\cos \left( 4x \right)+\cos \left( 2x \right)\] ……………….(6)
Now, using (6), transforming equation (2),
\[\{\cos \left( 4x \right)+\cos \left( 2x \right)\}2\cos 2x=1\]
\[\Rightarrow 2\cos 4x.\cos 2x+2{{\cos }^{2}}2x=1\]
\[\Rightarrow 2\cos 4x.\cos 2x+2{{\cos }^{2}}2x-1=0\] ………………….(7)
We know the formula, \[2{{\cos }^{2}}x-1=\cos 2x\] .
Now, replacing x by 2x in the above formula, we get
\[2{{\cos }^{2}}2x-1=\cos 4x\] ……………..(8)
Now, using (8), transforming equation (7), we get
\[\begin{align}
& \Rightarrow 2\cos 4x.\cos 2x+\cos 4x=0 \\
& \Rightarrow \cos 4x(2\cos 2x+1)=0 \\
\end{align}\]
\[\cos 4x=0\] or \[2\cos 2x+1=0\] .
We know that the general solution of \[\cos \theta =0\] is \[\theta =(2n+1)\dfrac{\pi }{2}\] .
\[\cos 4x=0\]
Now, using the general solution of \[\cos \theta =0\] , we get
\[\begin{align}
& \Rightarrow 4x=(2n+1)\dfrac{\pi }{2} \\
& \Rightarrow x=(2n+1)\dfrac{\pi }{8} \\
\end{align}\]
\[\begin{align}
& 2\cos 2x+1=0 \\
& \Rightarrow 2\cos 2x=-1 \\
& \Rightarrow \cos 2x=\dfrac{-1}{2} \\
\end{align}\]
We know that, \[\cos \left( \pi -\dfrac{\pi }{3} \right)=\cos \left( \dfrac{2\pi }{3} \right)=-\dfrac{1}{2}\]
We have to find the general solution of \[\cos \theta =-\dfrac{1}{2}\] .
\[\begin{align}
& \cos \theta =\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \Rightarrow cos\theta =\cos \left( \dfrac{2\pi }{3} \right) \\
\end{align}\]
\[\Rightarrow \theta =2n\pi \pm \dfrac{2\pi }{3}\]
Now, we have the general solution of \[\cos \theta =-\dfrac{1}{2}\] equal to \[\theta =2n\pi \pm \dfrac{2\pi }{3}\] .
Now, using the general solution of \[\cos \theta =-\dfrac{1}{2}\] , we get
\[\begin{align}
& \Rightarrow 2\cos 2x=-1 \\
& \Rightarrow \cos 2x=\dfrac{-1}{2} \\
\end{align}\]
Replacing 2x by \[\theta \] in the above equation, we get
\[\cos \theta =-\dfrac{1}{2}\]
we have the general solution of \[\cos \theta =-\dfrac{1}{2}\] equal to \[\theta =2n\pi \pm \dfrac{2\pi }{3}\]……..(9)
Now, replacing \[\theta \] by 2x in equation (9), we get
\[\begin{align}
& \Rightarrow 2x=2n\pi \pm \dfrac{2\pi }{3} \\
& \Rightarrow x=n\pi \pm \dfrac{\pi }{3} \\
\end{align}\]
So, \[x=n\pi \pm \dfrac{\pi }{3}\] or \[x=(2n+1)\dfrac{\pi }{8}\].
Note: In this question, one can consider 2x as A and 3x as B and then transform the equation \[4\cos x.\cos 2x.\cos 3x=1\] using the formula \[2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\] . If we do so, then we will get one 5x term due to which our equation will become complex to solve. So, this approach is wrong for this question. Therefore, we have to consider x as A and 3x as B and then transform \[4\cos x.\cos 2x.\cos 3x=1\] the equation using the formula \[2.\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\] .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

