
Find the positive solutions of the system of equations \[{x^{x + y}} = {y^n}\] and \[{y^{x + y}} = {x^{2n}}{y^n}\] where \[n > 0\].
Answer
582.6k+ views
Hint: Here we will proceed by multiplying the given equations and we will find the relations between the variables using the algebraic formula. Further we will use a substitution method to get the required positive values of the given system of equations.
Complete step-by-step answer:
Given system of equations are \[{x^{x + y}} = {y^n}...................................................................\left( 1 \right)\]
And \[{y^{x + y}} = {x^{2n}}{y^n}....................................................................\left( 2 \right)\]
Multiplying the equations (1) and (2), we have
\[ \Rightarrow {x^{x + y}} \times {y^{x + y}} = {y^n} \times {x^{2n}}{y^n}\]
Since, the powers are equal we can multiply the bases and we get
\[
\Rightarrow {\left( {xy} \right)^{x + y}} = {y^{2n}} \times {x^{2n}} \\
\Rightarrow {\left( {xy} \right)^{x + y}} = {\left( {xy} \right)^{2n}} \\
\]
Since, the bases are equal we can equate the powers. By equating the powers, we get
\[ \Rightarrow x + y = 2n.......................................................\left( 3 \right)\]
Substituting equation (3) in equation (1), we have
\[ \Rightarrow {x^{2n}} = {y^n}\]
By using the formula, \[{a^{mn}} = {\left( {{a^m}} \right)^n}\] we get
\[ \Rightarrow {\left( {{x^2}} \right)^n} = {y^n}\]
Since, the bases are equal we can equate the powers. By equating the powers, we get
\[\therefore {x^2} = y...................................................\left( 4 \right)\]
Substituting equation (4) in equation (3), we have
\[
\Rightarrow x + {x^2} = 2n \\
\Rightarrow {x^2} + x - 2n = 0 \\
\]
We know that the roots of a quadratic equation of the form \[a{x^2} + bx + c = 0\] is given by the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
So, the roots of the equation \[{x^2} + x - 2n = 0\] are given by
\[
\Rightarrow x = \dfrac{{ - \left( 1 \right) \pm \sqrt {{1^2} - 4\left( 1 \right)\left( { - 2n} \right)} }}{{2\left( 1 \right)}} \\
\Rightarrow x = \dfrac{{ - 1 \pm \sqrt {1 + 8n} }}{2} \\
\]
Since, \[n > 0\] the positive values of \[x = \dfrac{{ - 1 + \sqrt {1 + 8n} }}{2},\dfrac{{ - 1 - \sqrt {1 + 8n} }}{2}\].
Substituting \[x = \dfrac{{ - 1 \pm \sqrt {1 + 8n} }}{2}\] in equation (3), we get
\[
\Rightarrow \dfrac{{ - 1 \pm \sqrt {1 + 8n} }}{2} + y = 2n \\
\Rightarrow y = 2n - \dfrac{{ - 1 \pm \sqrt {1 + 8n} }}{2} \\
\Rightarrow y = \dfrac{{4n - 1 \pm \sqrt {1 + 8n} }}{2} \\
\]
Since, \[n > 0\] the positive values of \[y = \dfrac{{4n - 1 + \sqrt {1 + 8n} }}{2},\dfrac{{4n - 1 - \sqrt {1 + 8n} }}{2}\].
Thus, the required positive values are \[x = \dfrac{{ - 1 + \sqrt {1 + 8n} }}{2},\dfrac{{ - 1 - \sqrt {1 + 8n} }}{2}\] and \[y = \dfrac{{4n - 1 + \sqrt {1 + 8n} }}{2},\dfrac{{4n - 1 - \sqrt {1 + 8n} }}{2}\] for all values of \[n > 0\].
Note: The roots of a quadratic equation of the form \[a{x^2} + bx + c = 0\] is given by the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]. Here we have used a substitution method to find the unknown values of \[x,y\] in terms of \[n\]. Always remember that whenever the powers are equal then we can equate the bases and vice-versa.
Complete step-by-step answer:
Given system of equations are \[{x^{x + y}} = {y^n}...................................................................\left( 1 \right)\]
And \[{y^{x + y}} = {x^{2n}}{y^n}....................................................................\left( 2 \right)\]
Multiplying the equations (1) and (2), we have
\[ \Rightarrow {x^{x + y}} \times {y^{x + y}} = {y^n} \times {x^{2n}}{y^n}\]
Since, the powers are equal we can multiply the bases and we get
\[
\Rightarrow {\left( {xy} \right)^{x + y}} = {y^{2n}} \times {x^{2n}} \\
\Rightarrow {\left( {xy} \right)^{x + y}} = {\left( {xy} \right)^{2n}} \\
\]
Since, the bases are equal we can equate the powers. By equating the powers, we get
\[ \Rightarrow x + y = 2n.......................................................\left( 3 \right)\]
Substituting equation (3) in equation (1), we have
\[ \Rightarrow {x^{2n}} = {y^n}\]
By using the formula, \[{a^{mn}} = {\left( {{a^m}} \right)^n}\] we get
\[ \Rightarrow {\left( {{x^2}} \right)^n} = {y^n}\]
Since, the bases are equal we can equate the powers. By equating the powers, we get
\[\therefore {x^2} = y...................................................\left( 4 \right)\]
Substituting equation (4) in equation (3), we have
\[
\Rightarrow x + {x^2} = 2n \\
\Rightarrow {x^2} + x - 2n = 0 \\
\]
We know that the roots of a quadratic equation of the form \[a{x^2} + bx + c = 0\] is given by the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
So, the roots of the equation \[{x^2} + x - 2n = 0\] are given by
\[
\Rightarrow x = \dfrac{{ - \left( 1 \right) \pm \sqrt {{1^2} - 4\left( 1 \right)\left( { - 2n} \right)} }}{{2\left( 1 \right)}} \\
\Rightarrow x = \dfrac{{ - 1 \pm \sqrt {1 + 8n} }}{2} \\
\]
Since, \[n > 0\] the positive values of \[x = \dfrac{{ - 1 + \sqrt {1 + 8n} }}{2},\dfrac{{ - 1 - \sqrt {1 + 8n} }}{2}\].
Substituting \[x = \dfrac{{ - 1 \pm \sqrt {1 + 8n} }}{2}\] in equation (3), we get
\[
\Rightarrow \dfrac{{ - 1 \pm \sqrt {1 + 8n} }}{2} + y = 2n \\
\Rightarrow y = 2n - \dfrac{{ - 1 \pm \sqrt {1 + 8n} }}{2} \\
\Rightarrow y = \dfrac{{4n - 1 \pm \sqrt {1 + 8n} }}{2} \\
\]
Since, \[n > 0\] the positive values of \[y = \dfrac{{4n - 1 + \sqrt {1 + 8n} }}{2},\dfrac{{4n - 1 - \sqrt {1 + 8n} }}{2}\].
Thus, the required positive values are \[x = \dfrac{{ - 1 + \sqrt {1 + 8n} }}{2},\dfrac{{ - 1 - \sqrt {1 + 8n} }}{2}\] and \[y = \dfrac{{4n - 1 + \sqrt {1 + 8n} }}{2},\dfrac{{4n - 1 - \sqrt {1 + 8n} }}{2}\] for all values of \[n > 0\].
Note: The roots of a quadratic equation of the form \[a{x^2} + bx + c = 0\] is given by the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]. Here we have used a substitution method to find the unknown values of \[x,y\] in terms of \[n\]. Always remember that whenever the powers are equal then we can equate the bases and vice-versa.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

