
Find the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. Also, show that P is the midpoint of the line segment RQ.
Answer
596.7k+ views
Hint:First of all, draw a line segment PQ in which R is dividing externally in the ratio 1:2. Now use the formula, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] to find the position vector of R where ${m}_1$ and ${{m}_2}$ are ratio which R divides externally. Now, find the midpoint of RQ by using the formula, \[\dfrac{{{P}_{1}}+{{P}_{2}}}{2}\] and verify the given result.
Complete step-by-step answer:
Here, we are given that the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. We have to find the position vector of point R. Also, we have to show that P is the midpoint of the line segment RQ.
Let us first draw the line segment PQ such that R divides it externally in the ratio 1:2.
Here, we are given that position vectors of P and Q are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively. We know that the position vector of any point A is given by \[\overrightarrow{OA}\]. So, we get,
\[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\]
\[\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
We know that when any point (say A) divides a line segment externally. So, its position vector is given by the sectional formula as,
\[\overrightarrow{OA}=\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\]
From the diagram, we can see that \[{{m}_{1}}=1,{{m}_{2}}=2,{{P}_{1}}=\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\] and \[{{P}_{2}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OR}=\dfrac{{{m}_{1}}\left( \overrightarrow{OQ} \right)-{{m}_{2}}\left( \overrightarrow{OP} \right)}{{{m}_{1}}-{{m}_{2}}}\]
\[=\dfrac{1\left( \overrightarrow{a}-3\overrightarrow{b} \right)-2\left( 2\overrightarrow{a}+\overrightarrow{b} \right)}{1-2}\]
\[=\dfrac{\overrightarrow{a}-3\overrightarrow{b}-4\overrightarrow{a}-2\overrightarrow{b}}{-1}\]
\[=\dfrac{-3\overrightarrow{a}-5\overrightarrow{b}}{-1}\]
\[=3\overrightarrow{a}+5\overrightarrow{b}\]
So, we get the position vector of R as \[3\overrightarrow{a}+5\overrightarrow{b}\].
Now, let us find the midpoint of RQ.
We know that the position vector of the midpoint (say A) of any line segment is given by:
\[\overrightarrow{OA}=\dfrac{\overrightarrow{{{P}_{1}}}+\overrightarrow{{{P}_{2}}}}{2}\]
Here, from the above diagram, we can see that,
\[\overrightarrow{{{P}_{1}}}=\overrightarrow{OR}=3\overrightarrow{a}+5\overrightarrow{b}\]
\[\overrightarrow{{{P}_{2}}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OM}=\dfrac{\overrightarrow{OR}+\overrightarrow{OQ}}{2}\]
\[\overrightarrow{OM}=\dfrac{3\overrightarrow{a}+5\overrightarrow{b}+\overrightarrow{a}-3\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=\dfrac{4\overrightarrow{a}+2\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=2\overrightarrow{a}+\overrightarrow{b}\]
This is equal to the position vector of P that is \[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\].
So, we have proved that the midpoint of the line segment RQ is point P.
Note: In these types of questions, students often make mistakes while applying sectional formula by taking the wrong values of \[{{P}_{1}}\] and \[{{P}_{2}}\] or reversing their value. So, this must be taken care of. Also, take special notice, whether that point is dividing the line externally or internally. For external division use, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] while for internal division, use \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)+{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}+{{m}_{2}}}\].
Complete step-by-step answer:
Here, we are given that the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. We have to find the position vector of point R. Also, we have to show that P is the midpoint of the line segment RQ.
Let us first draw the line segment PQ such that R divides it externally in the ratio 1:2.
Here, we are given that position vectors of P and Q are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively. We know that the position vector of any point A is given by \[\overrightarrow{OA}\]. So, we get,
\[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\]
\[\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
We know that when any point (say A) divides a line segment externally. So, its position vector is given by the sectional formula as,
\[\overrightarrow{OA}=\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\]
From the diagram, we can see that \[{{m}_{1}}=1,{{m}_{2}}=2,{{P}_{1}}=\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\] and \[{{P}_{2}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OR}=\dfrac{{{m}_{1}}\left( \overrightarrow{OQ} \right)-{{m}_{2}}\left( \overrightarrow{OP} \right)}{{{m}_{1}}-{{m}_{2}}}\]
\[=\dfrac{1\left( \overrightarrow{a}-3\overrightarrow{b} \right)-2\left( 2\overrightarrow{a}+\overrightarrow{b} \right)}{1-2}\]
\[=\dfrac{\overrightarrow{a}-3\overrightarrow{b}-4\overrightarrow{a}-2\overrightarrow{b}}{-1}\]
\[=\dfrac{-3\overrightarrow{a}-5\overrightarrow{b}}{-1}\]
\[=3\overrightarrow{a}+5\overrightarrow{b}\]
So, we get the position vector of R as \[3\overrightarrow{a}+5\overrightarrow{b}\].
Now, let us find the midpoint of RQ.
We know that the position vector of the midpoint (say A) of any line segment is given by:
\[\overrightarrow{OA}=\dfrac{\overrightarrow{{{P}_{1}}}+\overrightarrow{{{P}_{2}}}}{2}\]
Here, from the above diagram, we can see that,
\[\overrightarrow{{{P}_{1}}}=\overrightarrow{OR}=3\overrightarrow{a}+5\overrightarrow{b}\]
\[\overrightarrow{{{P}_{2}}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OM}=\dfrac{\overrightarrow{OR}+\overrightarrow{OQ}}{2}\]
\[\overrightarrow{OM}=\dfrac{3\overrightarrow{a}+5\overrightarrow{b}+\overrightarrow{a}-3\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=\dfrac{4\overrightarrow{a}+2\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=2\overrightarrow{a}+\overrightarrow{b}\]
This is equal to the position vector of P that is \[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\].
So, we have proved that the midpoint of the line segment RQ is point P.
Note: In these types of questions, students often make mistakes while applying sectional formula by taking the wrong values of \[{{P}_{1}}\] and \[{{P}_{2}}\] or reversing their value. So, this must be taken care of. Also, take special notice, whether that point is dividing the line externally or internally. For external division use, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] while for internal division, use \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)+{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}+{{m}_{2}}}\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

