
Find the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. Also, show that P is the midpoint of the line segment RQ.
Answer
596.7k+ views
Hint:First of all, draw a line segment PQ in which R is dividing externally in the ratio 1:2. Now use the formula, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] to find the position vector of R where ${m}_1$ and ${{m}_2}$ are ratio which R divides externally. Now, find the midpoint of RQ by using the formula, \[\dfrac{{{P}_{1}}+{{P}_{2}}}{2}\] and verify the given result.
Complete step-by-step answer:
Here, we are given that the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. We have to find the position vector of point R. Also, we have to show that P is the midpoint of the line segment RQ.
Let us first draw the line segment PQ such that R divides it externally in the ratio 1:2.
Here, we are given that position vectors of P and Q are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively. We know that the position vector of any point A is given by \[\overrightarrow{OA}\]. So, we get,
\[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\]
\[\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
We know that when any point (say A) divides a line segment externally. So, its position vector is given by the sectional formula as,
\[\overrightarrow{OA}=\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\]
From the diagram, we can see that \[{{m}_{1}}=1,{{m}_{2}}=2,{{P}_{1}}=\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\] and \[{{P}_{2}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OR}=\dfrac{{{m}_{1}}\left( \overrightarrow{OQ} \right)-{{m}_{2}}\left( \overrightarrow{OP} \right)}{{{m}_{1}}-{{m}_{2}}}\]
\[=\dfrac{1\left( \overrightarrow{a}-3\overrightarrow{b} \right)-2\left( 2\overrightarrow{a}+\overrightarrow{b} \right)}{1-2}\]
\[=\dfrac{\overrightarrow{a}-3\overrightarrow{b}-4\overrightarrow{a}-2\overrightarrow{b}}{-1}\]
\[=\dfrac{-3\overrightarrow{a}-5\overrightarrow{b}}{-1}\]
\[=3\overrightarrow{a}+5\overrightarrow{b}\]
So, we get the position vector of R as \[3\overrightarrow{a}+5\overrightarrow{b}\].
Now, let us find the midpoint of RQ.
We know that the position vector of the midpoint (say A) of any line segment is given by:
\[\overrightarrow{OA}=\dfrac{\overrightarrow{{{P}_{1}}}+\overrightarrow{{{P}_{2}}}}{2}\]
Here, from the above diagram, we can see that,
\[\overrightarrow{{{P}_{1}}}=\overrightarrow{OR}=3\overrightarrow{a}+5\overrightarrow{b}\]
\[\overrightarrow{{{P}_{2}}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OM}=\dfrac{\overrightarrow{OR}+\overrightarrow{OQ}}{2}\]
\[\overrightarrow{OM}=\dfrac{3\overrightarrow{a}+5\overrightarrow{b}+\overrightarrow{a}-3\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=\dfrac{4\overrightarrow{a}+2\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=2\overrightarrow{a}+\overrightarrow{b}\]
This is equal to the position vector of P that is \[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\].
So, we have proved that the midpoint of the line segment RQ is point P.
Note: In these types of questions, students often make mistakes while applying sectional formula by taking the wrong values of \[{{P}_{1}}\] and \[{{P}_{2}}\] or reversing their value. So, this must be taken care of. Also, take special notice, whether that point is dividing the line externally or internally. For external division use, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] while for internal division, use \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)+{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}+{{m}_{2}}}\].
Complete step-by-step answer:
Here, we are given that the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. We have to find the position vector of point R. Also, we have to show that P is the midpoint of the line segment RQ.
Let us first draw the line segment PQ such that R divides it externally in the ratio 1:2.
Here, we are given that position vectors of P and Q are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively. We know that the position vector of any point A is given by \[\overrightarrow{OA}\]. So, we get,
\[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\]
\[\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
We know that when any point (say A) divides a line segment externally. So, its position vector is given by the sectional formula as,
\[\overrightarrow{OA}=\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\]
From the diagram, we can see that \[{{m}_{1}}=1,{{m}_{2}}=2,{{P}_{1}}=\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\] and \[{{P}_{2}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OR}=\dfrac{{{m}_{1}}\left( \overrightarrow{OQ} \right)-{{m}_{2}}\left( \overrightarrow{OP} \right)}{{{m}_{1}}-{{m}_{2}}}\]
\[=\dfrac{1\left( \overrightarrow{a}-3\overrightarrow{b} \right)-2\left( 2\overrightarrow{a}+\overrightarrow{b} \right)}{1-2}\]
\[=\dfrac{\overrightarrow{a}-3\overrightarrow{b}-4\overrightarrow{a}-2\overrightarrow{b}}{-1}\]
\[=\dfrac{-3\overrightarrow{a}-5\overrightarrow{b}}{-1}\]
\[=3\overrightarrow{a}+5\overrightarrow{b}\]
So, we get the position vector of R as \[3\overrightarrow{a}+5\overrightarrow{b}\].
Now, let us find the midpoint of RQ.
We know that the position vector of the midpoint (say A) of any line segment is given by:
\[\overrightarrow{OA}=\dfrac{\overrightarrow{{{P}_{1}}}+\overrightarrow{{{P}_{2}}}}{2}\]
Here, from the above diagram, we can see that,
\[\overrightarrow{{{P}_{1}}}=\overrightarrow{OR}=3\overrightarrow{a}+5\overrightarrow{b}\]
\[\overrightarrow{{{P}_{2}}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OM}=\dfrac{\overrightarrow{OR}+\overrightarrow{OQ}}{2}\]
\[\overrightarrow{OM}=\dfrac{3\overrightarrow{a}+5\overrightarrow{b}+\overrightarrow{a}-3\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=\dfrac{4\overrightarrow{a}+2\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=2\overrightarrow{a}+\overrightarrow{b}\]
This is equal to the position vector of P that is \[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\].
So, we have proved that the midpoint of the line segment RQ is point P.
Note: In these types of questions, students often make mistakes while applying sectional formula by taking the wrong values of \[{{P}_{1}}\] and \[{{P}_{2}}\] or reversing their value. So, this must be taken care of. Also, take special notice, whether that point is dividing the line externally or internally. For external division use, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] while for internal division, use \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)+{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}+{{m}_{2}}}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

