
Find the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. Also, show that P is the midpoint of the line segment RQ.
Answer
512.4k+ views
Hint:First of all, draw a line segment PQ in which R is dividing externally in the ratio 1:2. Now use the formula, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] to find the position vector of R where ${m}_1$ and ${{m}_2}$ are ratio which R divides externally. Now, find the midpoint of RQ by using the formula, \[\dfrac{{{P}_{1}}+{{P}_{2}}}{2}\] and verify the given result.
Complete step-by-step answer:
Here, we are given that the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. We have to find the position vector of point R. Also, we have to show that P is the midpoint of the line segment RQ.
Let us first draw the line segment PQ such that R divides it externally in the ratio 1:2.
Here, we are given that position vectors of P and Q are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively. We know that the position vector of any point A is given by \[\overrightarrow{OA}\]. So, we get,
\[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\]
\[\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
We know that when any point (say A) divides a line segment externally. So, its position vector is given by the sectional formula as,
\[\overrightarrow{OA}=\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\]
From the diagram, we can see that \[{{m}_{1}}=1,{{m}_{2}}=2,{{P}_{1}}=\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\] and \[{{P}_{2}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OR}=\dfrac{{{m}_{1}}\left( \overrightarrow{OQ} \right)-{{m}_{2}}\left( \overrightarrow{OP} \right)}{{{m}_{1}}-{{m}_{2}}}\]
\[=\dfrac{1\left( \overrightarrow{a}-3\overrightarrow{b} \right)-2\left( 2\overrightarrow{a}+\overrightarrow{b} \right)}{1-2}\]
\[=\dfrac{\overrightarrow{a}-3\overrightarrow{b}-4\overrightarrow{a}-2\overrightarrow{b}}{-1}\]
\[=\dfrac{-3\overrightarrow{a}-5\overrightarrow{b}}{-1}\]
\[=3\overrightarrow{a}+5\overrightarrow{b}\]
So, we get the position vector of R as \[3\overrightarrow{a}+5\overrightarrow{b}\].
Now, let us find the midpoint of RQ.
We know that the position vector of the midpoint (say A) of any line segment is given by:
\[\overrightarrow{OA}=\dfrac{\overrightarrow{{{P}_{1}}}+\overrightarrow{{{P}_{2}}}}{2}\]
Here, from the above diagram, we can see that,
\[\overrightarrow{{{P}_{1}}}=\overrightarrow{OR}=3\overrightarrow{a}+5\overrightarrow{b}\]
\[\overrightarrow{{{P}_{2}}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OM}=\dfrac{\overrightarrow{OR}+\overrightarrow{OQ}}{2}\]
\[\overrightarrow{OM}=\dfrac{3\overrightarrow{a}+5\overrightarrow{b}+\overrightarrow{a}-3\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=\dfrac{4\overrightarrow{a}+2\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=2\overrightarrow{a}+\overrightarrow{b}\]
This is equal to the position vector of P that is \[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\].
So, we have proved that the midpoint of the line segment RQ is point P.
Note: In these types of questions, students often make mistakes while applying sectional formula by taking the wrong values of \[{{P}_{1}}\] and \[{{P}_{2}}\] or reversing their value. So, this must be taken care of. Also, take special notice, whether that point is dividing the line externally or internally. For external division use, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] while for internal division, use \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)+{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}+{{m}_{2}}}\].
Complete step-by-step answer:
Here, we are given that the position vectors of a point R which divides the line joining two points P and Q whose position vectors are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively, externally in the ratio 1:2. We have to find the position vector of point R. Also, we have to show that P is the midpoint of the line segment RQ.
Let us first draw the line segment PQ such that R divides it externally in the ratio 1:2.

Here, we are given that position vectors of P and Q are \[2\overrightarrow{a}+\overrightarrow{b}\] and \[\overrightarrow{a}-3\overrightarrow{b}\] respectively. We know that the position vector of any point A is given by \[\overrightarrow{OA}\]. So, we get,
\[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\]
\[\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
We know that when any point (say A) divides a line segment externally. So, its position vector is given by the sectional formula as,
\[\overrightarrow{OA}=\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\]
From the diagram, we can see that \[{{m}_{1}}=1,{{m}_{2}}=2,{{P}_{1}}=\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\] and \[{{P}_{2}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OR}=\dfrac{{{m}_{1}}\left( \overrightarrow{OQ} \right)-{{m}_{2}}\left( \overrightarrow{OP} \right)}{{{m}_{1}}-{{m}_{2}}}\]
\[=\dfrac{1\left( \overrightarrow{a}-3\overrightarrow{b} \right)-2\left( 2\overrightarrow{a}+\overrightarrow{b} \right)}{1-2}\]
\[=\dfrac{\overrightarrow{a}-3\overrightarrow{b}-4\overrightarrow{a}-2\overrightarrow{b}}{-1}\]
\[=\dfrac{-3\overrightarrow{a}-5\overrightarrow{b}}{-1}\]
\[=3\overrightarrow{a}+5\overrightarrow{b}\]
So, we get the position vector of R as \[3\overrightarrow{a}+5\overrightarrow{b}\].
Now, let us find the midpoint of RQ.

We know that the position vector of the midpoint (say A) of any line segment is given by:
\[\overrightarrow{OA}=\dfrac{\overrightarrow{{{P}_{1}}}+\overrightarrow{{{P}_{2}}}}{2}\]
Here, from the above diagram, we can see that,
\[\overrightarrow{{{P}_{1}}}=\overrightarrow{OR}=3\overrightarrow{a}+5\overrightarrow{b}\]
\[\overrightarrow{{{P}_{2}}}=\overrightarrow{OQ}=\overrightarrow{a}-3\overrightarrow{b}\]
So, we get,
\[\overrightarrow{OM}=\dfrac{\overrightarrow{OR}+\overrightarrow{OQ}}{2}\]
\[\overrightarrow{OM}=\dfrac{3\overrightarrow{a}+5\overrightarrow{b}+\overrightarrow{a}-3\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=\dfrac{4\overrightarrow{a}+2\overrightarrow{b}}{2}\]
\[\overrightarrow{OM}=2\overrightarrow{a}+\overrightarrow{b}\]
This is equal to the position vector of P that is \[\overrightarrow{OP}=2\overrightarrow{a}+\overrightarrow{b}\].
So, we have proved that the midpoint of the line segment RQ is point P.
Note: In these types of questions, students often make mistakes while applying sectional formula by taking the wrong values of \[{{P}_{1}}\] and \[{{P}_{2}}\] or reversing their value. So, this must be taken care of. Also, take special notice, whether that point is dividing the line externally or internally. For external division use, \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)-{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}-{{m}_{2}}}\] while for internal division, use \[\dfrac{{{m}_{1}}\left( {{P}_{2}} \right)+{{m}_{2}}\left( {{P}_{1}} \right)}{{{m}_{1}}+{{m}_{2}}}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
